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TOWARD MEMORY-BASED REASONING
 

The intensive use of memory to recall specific episodes from the past­
rather than rules-should be the foundation of machine reasoning. 

CRAIG STANFILL and DAVID WALTZ 

The traditional assumption in artificial intelligence 
(AI) is that most expert knowledge ·is encoded in the 
form of rules. We consider the phenomenon of rea­
soning from memories of specific episodes, however, 
to be the foundation of an intelligent system, rather 
than an adj unct to some other reasoning method. 
This theory contrasts with much of the current 
work in similarity-based learning, which tacitly 
assumes that learning is equivalent to the automatic 
generation of rules, and differs from work on 
"explanation-based" and "case-based" reasoning in 
that it does not depend on having a strong domain 
model. 

With the development of new parallel architec­
tures, specifically the Connection Machine@ system, 
the operations necessary to implement this approach 

. to reasoning have become sufficiently fast to allow 
experimentation. This article describes MBRtalk, an 
experimental memory-based reasoning system that 
has been implemented on the Connection Machine, 
as well as the application of memory-based reason­
ing to other domains. 

THE MEMORY-BASED REASONING 
HYPOTHESIS 
Although we do not reject the necessity of other 
forms of reasoning, including those that are cur­
rently modeled by rules or by the induction of rules, 
we believe that the theory behind memory-based 
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reasoning warrants further experimentation. Two 
bodies of evidence have led us to support this 
hypothesis. The first is the study of cognition: It is 
difficult to conceive of thought without memory. 
The second is the inability of AI to achieve success 
in any broad domain or to effectively capture the 
notion of "common sense," much of which, we be­
lieve, is based on essentially undigested memories of 
past experience. 

We will primarily discuss the application of our 
hypothesis to the limited case of similarity-based in­
duction. The goal of similarity-based induction is to 
make decisions by looking for patterns in data. This 

.approach has been studied extensively in the con­
text of "similarity-based learning," which uses ob­
served patterns in the data to create classification 
rules. The memory-based version of this method 
eliminates the rules, solving the problem by direct 
reference to memory. For example, given a large set 
of medical records, a similarity-based induction pro-· 
gram should be able to diagnose new patients [clas­
sify them as having some known disease), using only 
the information contained in the database. The two 
approaches differ in their use of the database: Rule 
induction operates by inferring rules that reflect reg­
ularities in the data, whereas memory-based reason­
ing works directly from the database. 

Primitive Operations of Memory-Based Reasoning 
The memory-based reasoning hypothesis has not 
been extensively studied in the past because 
von Neumann machines do not support it well. 
There have been systems, such as Samuel's Check-
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ers player [38, 39], which worked from memory, but 
they have required an exact match between an item 
in memory and the current situation, and a non­
general search algorithm (e.g., hashing or indexing) 
to retrieve items from memory. In the real world 
there may be no exact matches, so the "best match" 
is called for. Unfortunately, there is no general way 
to search memory for the best match without exam­
ining every element of memory. On a von Neumann 
machine, this makes the use of large memories im­
practical: Experiments might take weeks to run. On 
a fine-grained parallel machine, such as the Connec­
tion Machine system, this problem does not begin to 
arise until the size of the database exceeds the size 
of the machine's memory, which pushes the prob­
lem back three or four orders of magnitude. (For 
another application of the Connection Machine sys­
tem to a data-retrieval problem, see "Parallel Free­
Text Search on the Connection Machine System" 
[43] on page 1229 of this issue.) 

The currently available Connection Machine sys­
tem [11] is a massively parallel SIMD computer with 
up to 65,536 (2 16

) processing elements, each having 
4,096 bits of memory and a 1-bit-wide ALU.1 The 
architecture can (in principle) be scaled upward to 
an arbitrarily large number of processors. Every 
processor executes the same program, though pro­
cessors can selectively ignore program steps. Pro­
cessors are connected to each other via a hypercube­
based routing network. On a Connection Machine 
system with n processors, any processor can send a 
message to any other processor in log n time. 

Accessing memory, in our current paradigm, re­
quires four basic operations. The first is counting the 
number of times various features or combinations of 
features occur. For example, in the context of medi­
cal applications, if we had a patient with a high 
fever, we would want to find out how often a high 
fever occurred in combination with various diseases. 
The second is using these feature counts to produce 
a metric (a topic discussed in detail in the section on 
the basic algorithm). The third step is calculating the 
dissimilarity between each item in memory and the 
current case (patient), and the last is retrieving the 
best matches. The first operation-counting-will be 
described here briefly as an illustration of how the 
parallelism of the Connection Machine system is 
utilized. 

One term in our metrics is the probability of a 
particular "disease" A given some "symptom" B (the 
conditional probability A IB). To compute this, we 
count the number of data items having feature B, 

1 Machines with 214 and 2'5 processors are also available. 

count the number of data items having both features 
A and B, and divide.2 The counting operation can be 
done for every symptom-disease combination simul­
taneously, in log2 n time. (For a discussion of the 
principles underlying such algorithms, see [12].) 

The amount of hardware needed to build a Con­
nection Machine system is O(n log n) in the number 
of processors.3 The time needed to perform memory­
based reasoning is O(log2 n). Therefore, memory­
based reasoning scales to arbitrarily large databases, 
as neither the quantity of hardware nor the time 
required for processing grows at a prohibitive rate. 

Memory-Based Reasoning in More Detail 
Although the basic idea of memory-based reasoning 
is simple, its implementation is somewhat more 
complex: We must separate important features from 
unimportant ones; moreover, what is important is 
usually context-sensitive. One cannot assign a single 
weight to each feature and expect it to hold true for 
all time. For example, suppose a patient reports ab­
dominal pain, which happens to match both records 
of pregnant patients and patients with ulcers.· In 
the case of ulcers, gender is irrelevant in judging 
the similarity of the record to that of the patient, 
whereas it is highly relevant in the case of preg­
nancy. However, this fact can orily be known to the 
system if it computes the statistical correlations be­
tween gender and ulcers on one hand, and gender 
and pregnancies on the other. Thus, we calinot as­
sign a single weight to gender ahead of time; instead, 
it must be calculated with respect to the task at 
hand.4 Various schemes for accomplishing this will 
be presented below. 

The operation of memory-based reasoning systems 
can be made clearer through another example. Sup­
pose that we have a large relational database of med­
ical patient records, with such predictor features as 

. r
"age," "sex," "symptoms," and "test results for each 
patient." Memory-based reasoning operates by pro­
posing plausible values for goal features, such" "as 
"diagnosis," "treatment," and "outcome," which are 
known for the patients in the database, but are un­
known for the patient being treated. A program 
can fill in the "diagnosis" slot for a new patient by 

2This method would be sufficient to support Bayesian reasoning [2,3,21] in 
real time, working directly from a database. 

3 We are counting the number of wires in the hypercube. A hypercube with 
2t vertices (processors) will have l/:zk2t wires. Setting n = 2t , the number of 
wires is 1f211 log2 II. The hardware needed to construct the processors is, of 
course, linear in the number of processors. 

<lOne can imagine saving weights for various situations rather than always 
calculating them on the fly, but this puts heavy demands on memory and 
requires another matching process between the current.!situation and 
prestored weights for a record. 
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(1) broadcasting to each processor the values for 
each of the new patient's predictors; (2) having each 
processor compute a numerical "distance" and a nu­
merical "weight" for each predictor in its record as a 
function of the new patient's value for that predic­
tor;5 (3) having each processor use these weights and 
distances to compute a total distance measure from 
each record to that of the new patient; and (4) select­
ing the n patients whose total distances from the 
new patient are the smallest. 

There are several possible outcomes: (1) No pa­
tient is sufficiently similar to the current case to 
make a diagnosis; (2) a very small number of pa­
tients (one or two) are retrieved; (3) a significant 
number of patients are retrieved, and all have simi­
lar diagnoses; and (4) there are several diagnoses 
among the nearest n patients. 

At this point, we can make some observations: If 
the first case holds, the system knows that it has 
never seen this set of symptoms before, and thus, it 
"knows that it doesn't know" how to diagnose this 
case. (Alternatively, the data on the new patient 
may be in error; the system can also propose this 
possibility.) In the second case, even if only one pa­
tient is similar (e.g., as in the second 'case of Legion­
naire's disease), the system may be able to make a 
tentative diagnosis. If the third case is true and all 
the retrieved patients have the same diagnosis, it is 
very likely that this patient should also get the same 
diagnosis; we might even be able to extract a diag­
nostic rule for this condition, which could be added 
to a microcomputer-based expert system. Finally, if 
the fourth case is true, then the system knows that it 
cannot come up with a definitive answer, and has 
several options: It can acquire more information 
(e.g., order blood tests), it can choose the most likely 
diagnosis, or it can propose working with an uncer­
tain diagnosis (e.g., if it thinks the patient might 
have pneumonia, but is not certain, it can suggest 
prescribing antibiotics as a precaution). 

Thus, memory-based reasoning, as applied to 
similarity-based induction, seeks to make decisions 
by "remembering" similar circumstances in the past. 
This is done by counting c6mbinations of features, . 

5 This is the complicated part of the algorithm. In general, a particular diagno­
sis will correspond to a range of values for a predictor. If both the new 
patient's value and a particular record's value tend to suggest the same diag­
nosis, the "distance" measure between the two predictors should be small, 
whereas if the two values are different, and the new patient's value rarely if 
ever occurs with the diagnosis in the record, the distance between the two 
should be large. The "weight" measures how important the predictor is: If the 
partiCular predictor value is associated only with this diagnosis. then the 
weight should be high, whereas it should be low if the same predictor value is 
correlated with many different diagnoses. Consider body temperature as a 
predictor: 98.6 and 98.8 would have a small distance between them, but a 
very low weight in predicting, say, cancer; 103.0 ;:Ind 104.0 have a fairly large 
distance between them, but also have quite a high weight for predicting 
diseases that are associated with high fevers. 
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using these counts to produce a metric, using the 
metric to find the dissimilarity between the current 
problem and every item in memory, and retrieving 
the best matches. When implemented on the Con­
nection Machine system, this takes lot n time. Since 
neither the hardware nor the processing time re­
quired grows at a prohibitive rate, memory-based 
reasoning scales to arbitrarily large databases. 
Memory-based reasoning degrades gracefully when 
it cannot come up with a definitive answer to a 
problem: It may respond that no answer is possible, 
give one or more plausible answers, or ask for more 
information. 

BACKGROUND: AI PARADIGMS 
Memory-based reasoning is related to a number of 
other subfields of AI, such as expert systems, ma­
chine learning, and "connectionist" research. It is 
also related to several fields outside of AI proper: 
statistics, cognitive science, information science, and 
database research. Here we will explore this work in 
the context of AI. 

For 30 years heuristic search and deduction 
have been the dominant paradigms in the central 
research areas of AI, including expert systems, 
natural-language processing, and knowledge repre-· 
sentation. This paradigm was applied to a wide 
range of problems, and met with many early suc­
cesses, including the General Problem Solver [32], 
the Geometry Theorem Prover [9], the MYCIN ex­
pert system for medical diagnosis [42], resolution 
theorem proving [35], and parsing with Augmerlted 
Transition Networks [47]. Each of these programs 
depended on searching for the right set of operators. 
to reach a goal state. Researchers have progressed by 
devising methods for specifying the operators, refin­
ing the structure of the information they operate on, 
and improving control over which operators are ap­
plied in each situation. Expert systems are solidly 
within this paradigm: In an expert system, operators 
are generally called rules, and the goal state is a 
decision (e.g., a diagnosis in a medical expert system) 
or action (as in an expert system designed to control 
a process). The AI languages Planner [10], Micro­
Planner [44], and Prolog [18] all embody some var­
iant of heuristic search with backtracking as their 
central control mechanism. 

The reasons why this paradigm has dominated 
the field are not difficult to understand in retrospect. 
AI originated in the early 1950s and was strongly 
influenced by work on the analysis of human 
problem-solving protocols in psychology [26] and AI 
[31, 33]. Humans experience problem solving as trial 
and error: Much effort seems to be spent in deciding 
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which operations to apply and in recovering from 
the consequences of wrong choices. At least for 
fairly small, well-defined problems, this model 
proved a good match to the abilities of von Neumann 
computers, which could perform small, well-defined 
operations, one at a time. 

Problems with the Heuristic Search Paradigm 
Although it is clear that intelligent behavior often 

. resembles heuristic sea-rch, at least at a gross level, 
there is no reason to suppose that heuristic search 
plays much of any role in the processes that under­
lie the operations of consciousness. As pointed out 
frequently by such critics of AI as Dreyfus [5], it is 
the underlying processes that account for the vast 
range of human behavior: Only a few kinds of plan­
ning and problem-solving tasks are accounted for by 
heuristic search methods, while in day-to-day life a 
vast range of our aetiyities is handled by very quick 

·decision-making processes that involve no explora­
tion of alternatives-where the reasons we give for . 
taking these actions are often justifications gener­
ated in retrospect. Heuristic search carinot neatly 
explain the reasons for actions that we attribute to 

·intuition, nor can it explain the wide range of ac­
tions that we can perform within 200 milliseconds, 
which include such problem-solving activities as 

· goal and operator selection, in addition to everyday 
tasks such as reacting to complex situations while 
driving, using tools and utensils, and answering 

• 6questions about £acts or experIences. 
Moreover, practical applications of the heuristic 

search/deductive reasoning paradigm have had only 
limited success to date. (See [45] for an extended 
discussion of the problems and state of the art in 
expert systems.) Knowledge acquisition, or the proc~ss 

of identifying and formalizing rules, remains an art. 
No truly automatic knowledge-acquisition scheme 
has been devised; instead, knowledge engineers must 
collaborate with expert informants7 in the domain of 
application, training them to think about their deci­
sions and actions in terms that can be turned into 
rules and knowledge bases. This process often takes 
a very long time (a year or more). In the end the 
performance of such sys~ems has often been disap­
pointing. Rule-based expert systems are "brittle"­
they tend to fail badly for problems even slightly 
outside their area of expertise and in unforeseen 
situations. The systems are not capable of detecting 
patently absurd conclusions, unless rules are explic­
itly inserted to detect them. 
e As pointed out by Feldman [7]. in order to act or decide within 200 milli­
seconds. the total length· of the longest path between input. sensors and motor 
effectors can involve no more than about 100 neurons. ThlS seems to preclude 
neural backtracking. 

7 Except. of course. where the knowledge engineer is also an expert in the 
domain of application. 
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Mainstream Learning in AI 
Because the scope of AI systems is limited until 
they can learn to extend themselves from expe­
rience, learning has always been a major area 
of research in AL8 Most of this work falls into 
two "mainstream" camps: similarity-based and 
explanation-based learning. Similarity-based learn­
ing has generally been expressed as the induction of 
either rules or class definitions [20, 24, 28, 34] from 
examples. The archetype for this paradigm was 
Winston's ARCH program [46], which inferred the 
definition of an arch from a series ofexamples. Of 
special relevance to our work is Lebowitz's system 
for discovering categories in a database combining 
voting districts' demographics and legislative voting 
records [19]. Cheeseman has proposed a variation on 
similarity-based reasoning that creates a statistical 
model of a database, then uses this model to make 
decisions [3]. He claims that this decision procedure 
can be proved optimal. 

Similarity-based learning and memory-based rea­
soning are analogous in that they solve the same 
problem: using syntactic patterns in a database to . 
solve classification and decision problems. They dIf­
fer substantially in mechanism, in that similarity­
based learning uses rules as an intermediate struc­
ture, whereas memory-based reasoning operates 
directly on the data. 

The other primary school of learning research is 
the explanation-based learning paradigm [4]. This is 
an incremental, knowledge-based approach, in 
which a system learns by explaining unanticipated 
events. The stated goal is "one-shot learning," in 
which le.arning can proceed from a single example. 
The classical example is learning the description 
of a cup: A program is given a structural description 
of a cup, ,the purpose of a cup (it allows one to 
drink), and domain knowledge sufficient to find the 
connection between structure and function. The 
program discovers that the handle allows the cup to 
be lifted, that the base prevents the cup from tipping 
over, and that the bowl allows it to contain liquid. 
Other aspects of the cup's structure, such as its 
color, composition, and precise shape, are not used 
in constructing the explanation and are hence left 
out of the general description of a cup. (See [27] and 
[29] for recent treatments of this problem.) 

Explanation-based learning presupposes strong 
domain models, which are conventionally imple­
mented through rules or through data structures 
traversed by a fairly uniform deductive proce­
dure. Ultimately, we will want to incorporate 
explanation-based techniques into a general theory 

8 References [24] and [25] offer broad collections of articles on current 
research issues in learning. 
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of memory-based reasoning. To do so now, however, 
would be premature, as we are working at a level 
where such domain models are unavailable. 

Current work on case-based reasoning [1, 17,40] 
is also relevant, as it combines memory with. 
explanation-based learning to allow a program to 
learn by remembering and analyzing its mistakes. In 
this model, when faced with a difficult task a prob­
lem solver will search memory for a previous case 
where an analogous task arose, then try to adapt that 
solution to its current needs. Like explanation-based 
learning, it requires a strong domain model. 

Other Paradigms for Learning 
Since the late 1970s a great deal of increased atten­
tion has been given to systems that learn using enti­
ties other than symbolic ones. This work harks back. 
more to the perceptrons and pattern recognition of 
the 1950s and early 1960s [36] than to the "physical 
symbol system" models of mainstream AI [30]. Some 
research, for example, Holland's "genetic algo­
rithms" systems [14], has persisted since the early 
1960s; most (e.g., [7, 13]) had its origin much more 
recently. The extensive literature on "associative 
memory" [13, 16] is also relevant, but these systems 
are generally oriented more toward deduction than 
induction. 

The bulk of the work in nonsymbolic learning has 
taken place in the field loosely called connectionism. 
Connectionist systems involve computations using 
large networks of linked nodes where weights on 
links and nodes are the loci of learning and compu­
tation. There are two broad interests in connection­
ist systems: representation [6, 8] and learning [13, 
15]. (See also [22] for a comprehensive treatment.) In 
general, nodes are assigned numerical "activation 
levels," and a means of computing outputs from the 
sum of the input link activations (e.g., thresholds or 
logistic functions). Links are directed and have 
weights; node outputs are multiplied by each link's 
weight to compute that link's influence on the node 
it ends on. Representation concerns the mapping be­
tween concepts and nodes, and is outside the scope 
of this article. . 

Learning in a connectionist network involves ad­
justing the link weights or node thresholds to new 
values so that the computations of the network will 
more closely match desired performance. Although 
there are a variety of ways for a .connectionist net­
work to learn, we will only consider here a method 
called back propagation error learning [37]. In this 
method, an input is presented to a system that has 
random link and node weights. The output gener­
ated for this input is compared with the desired out­
put, and an error signal is computed for each of the 
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output units. This output error is then propagated 
back to the links that feed the output units, then 
accumulated at internal hidden units (which are nei­
ther input nor output units). This error is then prop­
agated again until it reaches the input units. As er­
rors propagate past links, their weights are adjusted 
so as to lessen errors. This method, a kind of stage­
by-stage steepest descent, seems to provide near­
optimal solutions, and to provide them faster and 
in a conceptually clearer manner than in earlier 
connectionist models. 

NETtaik [41] was one of the first systems to use 
back propagation methods. NETtaik performs a word 
pronunciation task similar to the one solved by 
MBRtalk, described below, the difference being that 
it operates in the connectionist paradigm, whereas 
MBRtaik operates in the memory-based reasoning 
paradigm. A series of words are presented to NET­
talk, and its output for each is compared to the "cor­
rect" pronunciation from Merriam-Webster's Pocket 
Dictionary [23]. NETtalk uses the results of this com­
parison to adjust its internal weights, so that its per­
formance gradually improves. 

Internally, NETtaik consists of a three-layer cort­
nectionist network. The three layers are a set of in­
put units, a set of hidden units, and a set of output 
units. Each of the input units corresponds to a posi­
tion of a letter in a word. There are seven sets of 
input units; in general, NETtalk's task is to provide a 
pronunciation for the letter in the center set of units 
based on its letter and the three letters that precede 
and the three letters that follow it. Each of the 
groups of seven input nodes consists of nodes for 
each of the letters of the alphabet, space, and so on. 
Each of the output units corresponds to a phonetic 
feature. In the task, input words are presented one at 
a time and "slid across" a window of input units so 
each of their letters appears in succession in the . 
center set of units. Errors are accumulated at each of 
the output units, and back propagated after each let­
ter is processed. 

After 30,000 trials, NETtaik generated the correct 
phoneme 94 percent of the time for words it had 
already been "taught"; it generated the correct 
phonemes 78 percent of the time on novel words. 
The actual number of fully correct words is, of 
course, substantially less. 

PRONOUNCING ENGLISH WORDS 
The first task we discuss here is that of pronouncing 
novel words, using a database generated from 4438 
English words and their pronunciations. The pro­
gram that performs this task is called MBRtalk. Each 
of the 4438 words is used to generate as many data­
base records as it has letters. Each of these records 

December 1986 Volume 29 Number 12 Communications of the ACM 1217 



Special Issue 

consists of a letter. the preceding 4 letters. the suc­
ceeding 10 letters. the phoneme and stress for the 
letter. and the preceding 4 phonemes and stresses.9 

The program then tries to infer the pronunciation of 
words not in the database. 

Discussion of the Task 
MBRtalk achieves an 86 percent correct phoneme 
rate on novel words; however. this figure can be 
somewhat misleading, so we have done most of our 
calculations on the percentages of words done cor­
rectly. MBRtalk yields a full word performance of 
47 percent correct, 21 percent marginally wrong, and 
32 percent wrong. 

The 94 percent correct phoneme rate of NETtalk 
was achieved by testing with the same set of words 
on·which it was trained. For MBRtalk this kind of . 
test makes no sense, since an input word that ex­
actly matched a word stored in the system would 
have zero distance and would always dominate the 
decision making. Consequently, testing on the words 
in the database is too easy for our system (though 
an interesting and meaningful test on NETtalk). 
For novel words, the performance of NETtalk and 
MBRtalk seems comparable. 

NETtalk and MBRtalk both take advantage of reg2­
ularities in pronunciation, but no system can ever 
achieve perfect performance on this task. For exam­
ple, there are irregular words, such as though versus 
tough. If such irregulars are omitted from the train­
ing set, then the system has no way of reliably pro­
nouncing them. If, on the other hand, the irregulars 
are part of the training set, they create noise that 
might prevent the system from se~ing the correct 
pattern. Furthermore. English has borrowed many 
words from other languages, often retaining their 
original pronunciations. No automatic system could 
properly infer the pronunciations of filET versus 
targET, vILLA versus tortILLA, piZZa versus fiZZy. 
unless it had also been programmed to recognize the 
likely language of origin. Thus, the pronunciation 
task is an e.xtremely challenging one for any induc­
tive algorithm, as the data are noisy, the program is 
working with incomplete information, and such 
rules as do exist always have exceptions. 

MBRtalk and NETtalk start with the same set of 
words and pronunciations. A pronunciation key is 

. shown in Appendix A. 

THE BASIC ALGORITHM 
1n this section we will present the current algorithm 
for memory-based reasoning. Our goal is not so 

9 To simplifY the discussion. we sometimes simplify the record to include only 
the prece~l~g three letters. the succeeding three letters. the phoneme. and the 
stress. ThiS IS the representation used by NETtalk and in preliminary versions 
of MBRta~k. The reasons for the expanded record format are explained in the 
next sectIon. 

much to produce the best possible algorithm as to 
produce one that is adequate to test the memory­
based reasoning hypothesis.10 

The memory-based reasoning hypothesis is that 
reasoning may be accomplished by searching a data­
base of worked problems for the "best match" to the 
problem at hand. This requires a means of judging 
how closely two situations match, leading to the 
topic of metrics. A metric· is a distance measure A 
satisfying the following four properties: 

A(a, b) ~ 0 

A(a, b) =. A(b. a) 

A(a, a) = 0 

A(a, b) + A(b, c) ~ A(a, c) 

The implementation of memory-based reasoning de­
pends on finding a suitable definition of A. 

Notation 
Before we can discuss metrics, we must define some 
terms. A record is a structured object containing a 
fixed set of lields. We use Greek letters (T, p) for 
records, and italics for field names (n, pl. A field may 
be empty, or it may contain a value. We use quoted, 
"typewritten" letters (' a " 'b') for specific values, 
the letter u for nonspecific values, and" for empty 
fields. Field Iof a record pis written p.I. The set of 
possible values for a field I is written Vf. A nonspe­
cific value is represented by an italic letter (Vl). A 
database D is a set of records. 

A target is a recQrd T containing some empty 
fields. The empty fields are called goals, .and the 
nonempty fields are called predictors. The set of goals 
is written Gu and the set of predictors is writtenPT • 

A leature is a combination of a field and a value, 
such as [f = v]. We use features to restrict a database 
to a subset, as in D[f = v]. We can count the number 
of items in the ·full database, as ID I. or in a re­
stricted database, as in ID[f = v] I. 

Representations for Words 
For the pronunciation task, we have one record for 
each letter in a word. Each record has nine fields: 
the previous three ~~tters (field n - 3, n - 2, and 
n - 1), the letter itself (field n), the next three letters 
(n + 1, n + 2, and n + 3), the phoneme assigned to 
that letter (field p), and the stress (field S).11 The 
seven letter fields (n - 3, ... , n + 3) are predictors, 
while the phoneme and the stress fields (p and s) 
to R~aders well versed in mathematical statistics. decision theory. or auto­
matIc pattern recognition may object that this algorithm is ad hoc in the sense 
that we cannot offer any rigorous explanation of why it works. The point is 
well !aken. and more rigorous examination will probably produce a better 
algonthm. but nevertheless this algorithm produces the right answer often 
enough to support the memory-based reasoning hypothesis. 
t~ As noted in Appendix A. this is a simplification of the actual representa­
tIon. 
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are goals. The possible values for the letter fields 
(Vn-3, •.. , V~+3) are the letters of the roman alphabet 
plus the blank (denoted.). The possible values of 
the phoneme field (Vp) are the phoneme codes noted 
in the previous section, plus the silent (-). The pos­
sible values of the stress field (Vs) are ' 1 ' (primary 
stress), '2' (secondary stress), '0' (unstressed), ,+, 
(rising), and ,- (falling). For the world file we get I 

the following four records: 

A shorter version is written as follows: 

o ···file f + 0 
o . ·file· A 1 0 
O·file··l-O 
o file··· - "-'0 

The OverlapMetric 
The simplest measure of dissimilarity between two 
records 'T and p is the number of fields f for which 
they have i::I.ifferent values. We call this the overlap 
metric. It is not a particularly good metric, but makes 
a convenient starting point. We define it as follows: 

A('T, p) = L 6('T·f, p./) 
fEP. 

This metric is not very useful because it assigns 
equal weights to all fields. To illustrate this, we took 
the record ¢ .. .'file XX¢.and applied the above 
metric to a database of 8192 records. The following 
are t.he 10 best matches: 

Obviously, all fields should not be equal in impor­
tance. 
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The Weighted Feature Metric 
Features differ in importance because they differ in 
the strength with which they constrain the values of 
goal fields. For example, the feature [n = 'f'] con­
strains the field n to be 'f Among records satisfy­I • 

ing this constraint, the only observed values of the 
field p will be the phonemes 'f and ,- I (silent).I 

Thus, [n = 'f'] is very useful in predicting 'T.p and. 
should be given a high weight. On the other hand. 
the feature [n + 3 =' e ' ] is not a good predictor 
of'T.p. 

Different values of a single predictor field can also 
differ in how strongly they constrain the values of a 
goal field. For example. the feature [n = I a '] con­
strains 'T.p to be one of a relatively small number of 
phonemes. such as 'a I (bAr). 'e I (bAy). I c I (All). 
or I x I (About). Other values of 'T.n impose stronger 
constraints on 'T.p; as noted above. [n = 'f'] con­
strains 'T.p to be either I f or '-'.I 

We incorporate this into our metric by giving dif­
ferent weights to different features, starting with a 
predictor field f, a goal field g. a target 'T. and a 
database D. We determine the feature's weight 
w1(D. 'T./) by measuring the strength of the con­
straint imposed by the feature [f == 'T.f] on the field 
g. The specific method is to restrict the database to . 
D[f = 'T./], find the frequencies of the various values 
of g. square them, sum them. and take the square 
root of the result. The resulting metric is shown 
below: 

Ag(D. 'T. p) = L 67(D. 'T·f. p./)
 
fEP.
 

6g (D ' f) = {'T.f = p.f 0 
f • 'T'I' p. otherwise w7(D. 'T./) 

wg(D, 'T./) = VL (IP[f = 'T·f][g = v] 1)2 
f . "ev, ID[f = 'T.!] I 

Let us calculate w~ and W~+3 for the record 
¢ .. ·file XX¢. We start with a database of 
8192 records. The first step is to restrict the database 
to [n = 'f']. leaving 120 records. We then count the 
number of times each possible value v of the field p 
occurs and use the answer to compute the weight; 

t,: "; 

, ~ •• I '
 
.. - - . - .' -­
Total = 0.820.
 
Weight = 0.906.
 

We can also db this calculation for [n + 3 = 'e '] 
as shown in Table I (next page). This metric is ap-
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TABLEt 

plied to a database of 8192 records. The 10 n~arest 
matches to <> .. ·file >. XO are shown below. The 
improvement over the previous metric is clear: 

Value Differences 
. The metric shown above is still too strict in that it 
is based on the precise equality of the values of pre­
dictor fields. In some cases different values of a 
predictor field will be equivalent. For example, the 
letter •9' may yield four different phonemes: '9' 
(as in Globe), 'J' (as in German), 'f' (as in rbuGh), 
and ,-, (as in althouGh). Let us consider '9' and 
'J'. We find that gy, ge, and gi are usually pro­
nounced 'J' whereas all others are generally 
pronounced '9'. Thus, for determining the pro­
nunciation of 'g', the letters 'e', 'i', and 'y I 
are similar to each other, and different from all 
other letters. 

Suppose, now, that we are trying to pronounce the 
word gypsum. Using the above metric, we get the one 
word in the database that contains 'gy' (gypsy), as 
well as a more or less random assortment of other 
words containing the letter 'g'. As most' 9 , 's 
(taken at random) are hard, the memory-based rea­
soning algorithm will conclude that the 'g' should 
probably be pronounced with the hard sound. The 
output shown below is the result of running the 
target <> .• ·gyps <> against the restricted database 
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D[n = 'g' J(the reason for this restriction will be 
explained in the next section): 

We can do better than this by modifying the met­
ric to take into account similarity of values. What 
we need is a measure of the difference of two fea­
tures, so that the pen~lty assessed a field will be the 
product of the field's weight times this difference 
measure. 

Suppose we are given a target T, a record p, and a 
database D. To compute the difference df between 
two predictive features [f =T·fJ and [! =p.fJ, we 
calculate the frequencies of the various possible val­
ues of the goal field g in the restricted databases 
D[! = T.fJ and D[! = p.fJ, subtract them, square the 
results, and sum over all values of g. This is the 
value difference metric: 

,:l8(D, T, p) = ~ of(D, T.!, p.f) 
fEP. 

of[D, T.!, p~f) = df(D, T.!, p.f)wf(D, T.f) 

w8(D, T.f) = "\ / ~ (I D[! = T·fJ[g = vJ 1)2
/ V "eV" 1D[!= T·fJ I 

df(D, T.!, p.f) 

= ~ (I D[! =T.!][g = vJ ,_ 1D[f = p.!][g =vJ 1)2 
veV, 1D[f = T·fJ I ID[! = p·fJ I 
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For example, to calculate the difference between 
•a' and •e' in distinguishing between 9 I andI 

" J I, we calculate the frequences of I g' and •J • 
for each, then subtract, then square. This yields a 
field difference of 2. For •e' and •y' , the same 
calculation yields adifference of 0: 

When we apply this metric to our original prob­
lem, we find more support for the notion that the 
• 9 I .in gypsum is to be pronounced 'J': 

Restricting the Database 
If predictors always acted independently in con­
straining the values of goals, the algorithm we have 
described would be sufficient. Such is not the case, 
as the combined effect of two predictors is often 
quite different than their effect separately. For ex­
ample. the combination of the feature [n = I g.] 
with [n + 1 = •a'] lets us predict that the phoneme 
p will be I g' and not •J • . However, if we look at 
the feature [n + 1 = I a'] in isolation, the effect 
vanishes. 

The solution to this problem lies in a technique 
called restriction-applying the memory-based rea­
soning algorithm not to the entire database, but to a 
sUbset. We may obtain this subset by restricting the 
value of a predictor field or by restricting the value 
of the goal field. These two techniques are called 
predictor restriction and goal restriction. 

Predictor restriction is accomplished by finding 
the most important field (as judged by the weight 
function w1) and restricting the database to those 
records having the same value in that field as the 
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target record. In the "gypsum" example shown 
above, we calculate the weight for each of the 
predictor fields and find that the feature n has 
the highest weight. The value of n in the record . 
o ... gyps >. >. 0 is •g', so we restrict the database 
to [n =g). We then apply the field difference metric 
as described above. 

Goal restriction is accomplished by using the 
memory-based reasoning algorithm to discover plau­
sible values for the goal field, then restricting the 
database to records containing one of those values in 
their goal fields. In our example of "gypsum," apply­
ing the field difference metric to the entire database 
yields •g' and •J' as plausible values for p. If we 
restrict the database records having either •g' or 
•J' as their phonemes and then apply the field .dif­
ference metric to the reduced database, we get re­
sults similar to those shown for predictor restriction. 

Summation of Evidence 
Once we have found the dissimilarity between the 
target and every record in the database, we need to 
decide on the most likely value for the goal field. 

The first step is to retrieve the records that most 
closely match the target. We might do this by setting 
a threshold and retrieving all reCords with smaller 
dissimilarity ratings. Alternatively, we could re­
trieve the n closest matches, for some suitable value 
of n. At present, we use the latter method, with 
n= 10. 

.Having retrieved the records most closely match­
ing th~ target, we look at their goal' fields. If the goals 
are all the same, we can be confident that the value 
they contain is the correct answer. Sometimes, how­
ever, several different values olthe goal field will be 
observed. In this case we must decide which of these 
values is preferred. We assign each record a weight 
equal to the reciprocal of its dissimilarity12 and sum 
the weight of each observed value of the goal field. 
The example below shows this weighting method: 

lZ We fi"'l add 0.01 to avoid dividing by zero. We could also give a dissimilar­
ity oJ zero infinite ·weight. The laUer alternative is appropriale i£ the value oJ 
the goal field is a function of the values of the predictor fields. This condition 
does no4 hold for lhe pronunciation task as fonnulated here. as a word may 
have two differenl pronunciations. 
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Totaling the weights for I 9 I and I J ' , we get the 
following: 

:'1 t.~·.·.\::'_,"'tl ~.-. . ..~t"''''' . f:? J';:; 
- _.. - - ...... _. . - - - ---' 

The result of this experiment can be summarized 
as follows: "The correct phoneme is probably I J I , 

but it might be I 9 I ." 

Implementation on the Connection Machine System 
Although a full description of implementation of 
these metrics on the Connection Machine system 
is beyond the scope of this article, a brief note is 
in order. The dominant computation in calculat­
ing this metric is counting the number of occur­

.rences of each predictor-value/goal-value pair 
ID[! =p.!][g = p.g] I. This is done in parallel for 
every possible value of p.! and p.g using a histogram­
ming algorithm, which takes approximately 16 ptilli­
seconds.13 

Suppose we have the following database: 

The next step is to segment the sorted database 
into regions where both the predictor (n + 1) and the 
goal (p) are uniform: 

We first select the values of the predictor field 
n + 1 and the goal field p: 

We then sort the records. This takes log2 n time: 

t3This assumes 16K records on a 16K-processor Connection Machine. 

Finally, the length of each of these segments is 
calculated. This takes log n time: 

The time required to perform this set of operations 
is dominated by the sorting step, which takes log2 n 
time. 

The aim of memory-based reasoning is to fill in 
the goal fields of a target record by retrieving records 
from a database. The basis of the method is finding 
the dissimilarity between the target record and each 
of the data records. The dissimilarity measure is cal­
culated by assigning a weight to each field and a 
value difference measure to each value occupying 
those fields. In order to allow for the interaction of 
pairs of fields, we may employ one of two restriction 
methods. In predictor restriction, we operate on a 
subset of the database having the same value as the 
target for the most important predictor field. In goal 
restriction, we apply the dissimilarity measure to the 
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full database to find some plausible values for the 
goal field, restrict the database to those records hav­
ing one .of these plausible values, and finally apply 
the dissimilarity measure to this subset. The result 
of all this is a set of 10 (or so) data records that are 
similar to the target record, plus dissimilarity mea­
sures. The values of their goal fields, weighted 
according to their dissimilarity, are the plausible 
values for the goal. 

EXPERIMENTAL RESULTS 
We started the MBRtaik experiment with a diction­
ary of slightly over 20,199 words. We randomly se­
lected 4,438 words, with a total of 32,768 letters, for 
use as the MBRtaik database. The memory-based 
reasoning algorithm was then applied to 100 words, 
totaling 772 letters; 86 percent of the phonemes 
(43 percent of the words) matched the dictionary 
pronunication exactly. Humans, listening to the out­
put of the program played through a DECtalk8 

speech synthesizer, judged the pronunciation as 
being at least as good as the dictionary pronuncia­
tion 47 percent of the time, slightly mispronounced 
21 percent of the time, and badly mispronounced 
32 percent of the time. 

For reasons stated previously, the pronunciation 
task is fundamentally impossible: English pronuncia­
tion is too irregular for anysort of inductive reason­
ing to work all the time. Nevertheless, this is the 
sort of difficult, noisy real-world problem that we 
want to be able to solve. 

The Representation 
When we began work on the pronunciation task, we 
used a seven-letter window (as in NETtalk). Each 
window had a central letter, the three preceding 
letters, the three following letters, the phoneme as­
sociated with the central letter, and the stress of the 
central letter. The seven letter fields were used as 
predictors, while the phoneme and the stress were 
used as goals. 

After a certain amount of work, we modified this 
representation. First, we noted that a seven-letter 
window was inadequate to determine the pronunci­
ation of a word, because to.pronounce the first sylla­
ble one often needs to know the suffix of the word 
(e.g., observatory = xbz.;Rvxtori versus observation 
= cbsxrveSx - n). Therefore, we extended the win­
dow to 15 letters:.a central letter, the 4 preceding 
letters, and the 10 succeeding letters. . 

In addition, we noted that there were cases where 
the system produced incoherent values for succes-

DECtaik is a trademark of Digital Equipment Corporation. 

sive phonemes. For example, the sequence of letters 
, qui' can, depending on whether it is stressed or 
not, be pronounced either 'Q - I' or 'k* - ,. In cases 
where the stress assignment was unclear, it was pos­
sible to get incoherent choices, such as 'Q - - , or 
'k*1'. This was resolved by adding new predictor 
fields: p - 4, ... , p - 1, which recorded the preced­
ing phonemes. We then work left to right, filling in 
appropriate values of these fields as we go. We might 
start with the following record: 

o ... equipment·.· ..~.1 ). 0 

Applying the memory-based reasoning algorithm, 
we might get either' k' or 'Q' as the correct pro­
nunciation for 'q'. Assume we get 'Q'. When we 
get to the next position in the word, this decision is 
to be carried along: 

o . ·eq u ipment··· .. 1Q). 0 

We now apply the memory-based reasoning algo­
rithm to the letter 'u' and are assured of getting the 
only coherent choice, which is ,-, (silent). The pre­
vious decision to pronunce.the 'q' as 'Q' has ef­
fectively determined the pronu~ciationof 'U'. 

This change of representation improved the coher­
ence of MBRtaik pronunciations, the lesson being. 
that in many cases all we need do to improve system 
performance is to improve the representation; re­
programming or modification of an existing rule base 
may not be necessary. 

The Experiment
 
We now come to the primary experiment. As .
 
explained above, we used a 4438-word subset of
 
Merriam-Webster's Pocket Dictionary plus the memory­

based reasoning algorithm to pronounce 100 novel
 
words. We then compared MBRtaik pronunciations
 
against the dictionary's. The strictest possible stan­

dard of comparison is to require the two to be iden­

tical. Forty-three percent of the words met this
 
standard (86 percent of the phonemes).
 

A more realistic standard of comparison, however, 
is the judgment of a native speaker of English. ffhe 
output of the program, as evaluated by human 
judges, is shown in Appendix B, p. 1226.) Many 
words have several acceptable pronunciations. For 
example, the word object may be pronounced with 
the stress on either the first or the second syllable. 
In such cases, the listeners were requested to mark 
the two pronunciations "equally good." Also, in 
some contexts two phonemes are indistinguishable. 
For example, it is not possible to hear the difference 
between the dictionary pronunciation of furniture 
(' f -Rn1C-R- ') and that produced by memory-
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based reasoning (' f - RnxC - R- '). In these cases, 
the listeners marked the two pronunciations 
"identical." 

For this experiment, the program's pronunciation 
and the dictionary's pronunciation were used to 
drive a DECtaik speech synthesizer. The order of 
presentation was randomized, so that the judges 
could not tell which was which. They had several 
possible replies: They could state that there was no 
audible difference between the two pronunciations, 
that the two pronunciations were different but 
equally good, that one was slightly mispronounced, 
or that either or both words were badly mis­
pronounced. They could listen to the two words as 
many times as was necessary to make a decision. 
The following·table summarizes the results of the 
experiment. First, we have the percentage of the 
words assigned by a plurality of the judges to each 
category. Then we have the responses tabulated ac­
cording to whether the program's pronunciation was 
judged good; poor, or bad. 

Analysis 
Some of the errors can be attributed to haVing insuf­
ficient information to choose the correct pronuncia­
tion. Pronunciation can depend on whether a word 
is a noun or a verb, which is information that the 
program does not have available. For example, the 
program takes the word abject and pronounces 
it as if it were a verb (' xb j Ekt '); Of the 53 mis­
pronunciations, 19 were due to this cause. In addi­
tion, foreign words that have been incorporated into 
English are often pronounced according to the rules 
of the language from which they came. Thus, the 
program pronounces the word montage as if it were 
English (' rna n t IJ - '). There were 6 errors in this 
category. 

There were three errors due to the program en-­
countering a rare combination of letters, such as a 
word-initial IpS' (psychiatry). 

In summary, out of the 100 words given to the 

memory-based reasoning algorithm, 47 were pro­
nounced correctly, 21 were slightly mispronounced, 
and 32 were badly mispronounced. Of the 53 words 
that were mispronounced, 19 were due to the lack of 
part-of-speech information, 6 were because the word 
was from a foreign language, and 3 were because 
they contained rare combinations of letters. Thus, 
the reasoning procedure made 28 errors that it might 
possibly have avoided. 

Considering the difficulty of the task, we believe 
this level of performance to be highly encouraging. 
Further work in the pronunciation domain will con­
centrate on improving the representation (e.g., add­
ing part-of-speech information) and on isolating the 
reasons for avoidable errors. 

CONCLUSIONS AND PROSPECTS
 
Memory-based reasoning fits the Connection Ma­

chine system well because both the cost of the hard­

ware and the speed of execution for the algorithms
 
scale well with increasing database size: The cost of
 
the hardware is O(n log n) in the size of the data­

base, while the processing time is O(lot n).
 

On a sequential machine, both the cost of the 
hardware and'the time required for processing grow 
linearly with the size of the database. The linear 
growth in processing time causes the time to make a 
decision to become unacceptably large for sizable 
databases. One solution to this is to build faster se­
quential machines. However, there are absolute lim­
its to how fast a sequential machine can be, and as 
those limits are approached, the hardware becomes 
extremely expensive.. ' 

Another solution is to use a vector machine. 
Vector machines may work well for some aspects of 
memory-based reasoning. However, unless we allow 
the number of processors utilized to grow as the size 
of the database increases, we get no more than a 
constant speedup over a sequential machine. 

If we allow the number of processors to grow as 
the size of the database increases, then we have a 
computer that is in accordance with our expecta­
tions for a truly parallel machine. At this point, 
interprocessor communication becomes an issue. 
A highly interconnected communication scheme, 
such as a hypercube or butterfly, is necessary to 
allow the counting operations to be performed in a 
reasonable amount of time (lot n). 

One issue remains: whether to use a fine-grained 
SIMD machine or a large-grained MIMD machine. 
The memory-based reasoning algorithms are intrin­
sically SIMD, so there is no need for the added cir­
cuitry necessary to support MIMD. In addition, the 
memory-based reasoning algorithms are communi­
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cation intensive. A fine-grained architecture will 
have more communication nodes and a greater total 
communication bandwidth than a large-,8I'ained ar­
chitecture with the same amount of hardware. 

Thus, the ideal machine for memory-based rea­
soning would have a parallel, highly interconnected, 
fine-grained SIMD architecture. 

In the long run, we believe that memory-based 
reasoning systems can play an important role in 
building truly intelligent systems, but we have much 
to do and learn before such a goal can be achieved. 
In the short run, memory-based reasoning systems 
should be able to function like expert systems in 
domains where there are databases of situations and 
outcomes/actions. Possible application areas include 
medical diagnosis and proposal of diagnostic tests, 
weather forecasting, credit decision support, invest­
ment advising, and insurance risk assessment. 

There are many advantages: 

• No expert is required; a system builder need only 
identify and mark database contents according to 
whether they are symptoms or features of situa­
tions, outcomes or actions, or optional tests that 
can be ordered. 

• Memory-based systems can form hypotheses on 
the basis of even a single precedent, something 
rule-based systems cannot do-rules are inher­
ently summaries of regularities among classes of 
items. 

• Memory-based reasoning systems "know when 
they don't know": if no items in memory are 
closely related to the current item being analyzed, 
then the system will be able to recognize this fact 
and tell the user. This fact should also allow 
memory-based reasoning systems to degrade 
gracefully. 

• Memory-based systems should require far less 
time to implement. However, once constructed, 
rule-based systems can operate on much less pow­
·erful hardware. Thus we also intend to explore 
the automatic generation of rules by memory­
based systems. 

Computer learning has generally stayed within the 
heuristic search/deductive reasoning paradigm: 
Most learning algorithms try to derive a set of rules 
from a body of data. Memory-based reasoning, in its 
pure form, differs from traditionalleaming methods 
in that no rules are ever created. This has three 
advantages: . 

• Deductions made by the system are achieved 
without the intermediate use of rules as a repre­
sentation, so there are fewer opportunities for in-
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advertently introducing inaccuracies, such as 
those that result from the combining "confidence 
levels" for a chain of rules. 

• Rule generation has a combinatorially explosive 
search space of possible rules to contend with, 
while memory-based systems can focus their anal­
ysis on the cases at hand. It may be that, to cap­
ture a large knowledge base, so many rules are 
needed that the rule-generation process will never 
finish; there is never any certainty that the result­
ing rule set is complete, and the resulting system 
may fail at any moment. With a memory-based. 
system, the data used as the basis of reasoning are 
always available. Therefore, within limits imposed 
by the accuracy of the retrieval mechanism and 
the contents of the database, errors of omission 
should not occur. 

• Rule-based systems often include invented vari­
.abIes to insure proper sequencing of rules. Order­
ing problems and unexpected interactions are not 
a difficultyin memory-based reasoning systems.. 

Both learning/rule-based systems and memory-
based systems are fundamentally limited by the da.., 
tabases they work from and by their retrieval meth­
ods. There will be cases where a database is too 
sparse to give meaningful answers, and there may be 
cases where spurious correlations will give bad an­
swers. In both classes of systems, statistical tests can 
guard against these problems. For both systems, 
there may also be cases where the recall mechanism 
fails to find all the relevant data. It is necessary to 
take steps to ensure such recall failures do not intro­
duce systematic biases. 

It isn't quite fair to compare connectionist re­
search with memory-based reasoning, since the 
goals of each are so different. There are, however, 
several inherent advantages to memory-based rea­
soning: 

• Memory-based systems require no training; they 
begin to produce results immediately. 

• Memory-based systems are understandable and 
. can potentially explain why they act as they do;
 

foreseeable connectionist models will all be very
 
difficult to analyze.
 

• Since connectionist models average the values of 
features, they may permanently lose some infor­
mation that is present in the particular sets of fea­
tures that co-occur in episodes. Memory-based sys­
tems may be inherently more powerful. 

We intend to pursue this research on real medical, 
weather, and financial databases, and look forward 
with excitement to the future of this technology. 
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