
SPECIAL ISSUE

Articles

TOWARD MEMORY-BASED REASONING

The intensive use of memory to recall specific episodes from the past­
rather than rules-should be the foundation of machine reasoning.

CRAIG STANFILL and DAVID WALTZ

The traditional assumption in artificial intelligence
(AI) is that most expert knowledge ·is encoded in the
form of rules. We consider the phenomenon of rea­
soning from memories of specific episodes, however,
to be the foundation of an intelligent system, rather
than an adj unct to some other reasoning method.
This theory contrasts with much of the current
work in similarity-based learning, which tacitly
assumes that learning is equivalent to the automatic
generation of rules, and differs from work on
"explanation-based" and "case-based" reasoning in
that it does not depend on having a strong domain
model.

With the development of new parallel architec­
tures, specifically the Connection Machine@ system,
the operations necessary to implement this approach

. to reasoning have become sufficiently fast to allow
experimentation. This article describes MBRtalk, an
experimental memory-based reasoning system that
has been implemented on the Connection Machine,
as well as the application of memory-based reason­
ing to other domains.

THE MEMORY-BASED REASONING
HYPOTHESIS
Although we do not reject the necessity of other
forms of reasoning, including those that are cur­
rently modeled by rules or by the induction of rules,
we believe that the theory behind memory-based

The Connection Machine is a registered trademark of Thinking Machines

Corporation.

© 1986 ACM 0001-0782/86/1200-1213 75¢

reasoning warrants further experimentation. Two
bodies of evidence have led us to support this
hypothesis. The first is the study of cognition: It is
difficult to conceive of thought without memory.
The second is the inability of AI to achieve success
in any broad domain or to effectively capture the
notion of "common sense," much of which, we be­
lieve, is based on essentially undigested memories of
past experience.

We will primarily discuss the application of our
hypothesis to the limited case of similarity-based in­
duction. The goal of similarity-based induction is to
make decisions by looking for patterns in data. This

.approach has been studied extensively in the con­
text of "similarity-based learning," which uses ob­
served patterns in the data to create classification
rules. The memory-based version of this method
eliminates the rules, solving the problem by direct
reference to memory. For example, given a large set
of medical records, a similarity-based induction pro-·
gram should be able to diagnose new patients [clas­
sify them as having some known disease), using only
the information contained in the database. The two
approaches differ in their use of the database: Rule
induction operates by inferring rules that reflect reg­
ularities in the data, whereas memory-based reason­
ing works directly from the database.

Primitive Operations of Memory-Based Reasoning
The memory-based reasoning hypothesis has not
been extensively studied in the past because
von Neumann machines do not support it well.
There have been systems, such as Samuel's Check-

December 1986 Volume 29 Number 12 Communications of the ACM 1213

Special Issue

ers player [38, 39], which worked from memory, but
they have required an exact match between an item
in memory and the current situation, and a non­
general search algorithm (e.g., hashing or indexing)
to retrieve items from memory. In the real world
there may be no exact matches, so the "best match"
is called for. Unfortunately, there is no general way
to search memory for the best match without exam­
ining every element of memory. On a von Neumann
machine, this makes the use of large memories im­
practical: Experiments might take weeks to run. On
a fine-grained parallel machine, such as the Connec­
tion Machine system, this problem does not begin to
arise until the size of the database exceeds the size
of the machine's memory, which pushes the prob­
lem back three or four orders of magnitude. (For
another application of the Connection Machine sys­
tem to a data-retrieval problem, see "Parallel Free­
Text Search on the Connection Machine System"
[43] on page 1229 of this issue.)

The currently available Connection Machine sys­
tem [11] is a massively parallel SIMD computer with
up to 65,536 (2 16

) processing elements, each having
4,096 bits of memory and a 1-bit-wide ALU.1 The
architecture can (in principle) be scaled upward to
an arbitrarily large number of processors. Every
processor executes the same program, though pro­
cessors can selectively ignore program steps. Pro­
cessors are connected to each other via a hypercube­
based routing network. On a Connection Machine
system with n processors, any processor can send a
message to any other processor in log n time.

Accessing memory, in our current paradigm, re­
quires four basic operations. The first is counting the
number of times various features or combinations of
features occur. For example, in the context of medi­
cal applications, if we had a patient with a high
fever, we would want to find out how often a high
fever occurred in combination with various diseases.
The second is using these feature counts to produce
a metric (a topic discussed in detail in the section on
the basic algorithm). The third step is calculating the
dissimilarity between each item in memory and the
current case (patient), and the last is retrieving the
best matches. The first operation-counting-will be
described here briefly as an illustration of how the
parallelism of the Connection Machine system is
utilized.

One term in our metrics is the probability of a
particular "disease" A given some "symptom" B (the
conditional probability A IB). To compute this, we
count the number of data items having feature B,

1 Machines with 214 and 2'5 processors are also available.

count the number of data items having both features
A and B, and divide.2 The counting operation can be
done for every symptom-disease combination simul­
taneously, in log2 n time. (For a discussion of the
principles underlying such algorithms, see [12].)

The amount of hardware needed to build a Con­
nection Machine system is O(n log n) in the number
of processors.3 The time needed to perform memory­
based reasoning is O(log2 n). Therefore, memory­
based reasoning scales to arbitrarily large databases,
as neither the quantity of hardware nor the time
required for processing grows at a prohibitive rate.

Memory-Based Reasoning in More Detail
Although the basic idea of memory-based reasoning
is simple, its implementation is somewhat more
complex: We must separate important features from
unimportant ones; moreover, what is important is
usually context-sensitive. One cannot assign a single
weight to each feature and expect it to hold true for
all time. For example, suppose a patient reports ab­
dominal pain, which happens to match both records
of pregnant patients and patients with ulcers.· In
the case of ulcers, gender is irrelevant in judging
the similarity of the record to that of the patient,
whereas it is highly relevant in the case of preg­
nancy. However, this fact can orily be known to the
system if it computes the statistical correlations be­
tween gender and ulcers on one hand, and gender
and pregnancies on the other. Thus, we calinot as­
sign a single weight to gender ahead of time; instead,
it must be calculated with respect to the task at
hand.4 Various schemes for accomplishing this will
be presented below.

The operation of memory-based reasoning systems
can be made clearer through another example. Sup­
pose that we have a large relational database of med­
ical patient records, with such predictor features as

. r
"age," "sex," "symptoms," and "test results for each
patient." Memory-based reasoning operates by pro­
posing plausible values for goal features, such" "as
"diagnosis," "treatment," and "outcome," which are
known for the patients in the database, but are un­
known for the patient being treated. A program
can fill in the "diagnosis" slot for a new patient by

2This method would be sufficient to support Bayesian reasoning [2,3,21] in
real time, working directly from a database.

3 We are counting the number of wires in the hypercube. A hypercube with
2t vertices (processors) will have l/:zk2t wires. Setting n = 2t , the number of
wires is 1f211 log2 II. The hardware needed to construct the processors is, of
course, linear in the number of processors.

<lOne can imagine saving weights for various situations rather than always
calculating them on the fly, but this puts heavy demands on memory and
requires another matching process between the current.!situation and
prestored weights for a record.

1214 Communications of the ACM December 1986 Volume 29 Number 12

(1) broadcasting to each processor the values for
each of the new patient's predictors; (2) having each
processor compute a numerical "distance" and a nu­
merical "weight" for each predictor in its record as a
function of the new patient's value for that predic­
tor;5 (3) having each processor use these weights and
distances to compute a total distance measure from
each record to that of the new patient; and (4) select­
ing the n patients whose total distances from the
new patient are the smallest.

There are several possible outcomes: (1) No pa­
tient is sufficiently similar to the current case to
make a diagnosis; (2) a very small number of pa­
tients (one or two) are retrieved; (3) a significant
number of patients are retrieved, and all have simi­
lar diagnoses; and (4) there are several diagnoses
among the nearest n patients.

At this point, we can make some observations: If
the first case holds, the system knows that it has
never seen this set of symptoms before, and thus, it
"knows that it doesn't know" how to diagnose this
case. (Alternatively, the data on the new patient
may be in error; the system can also propose this
possibility.) In the second case, even if only one pa­
tient is similar (e.g., as in the second 'case of Legion­
naire's disease), the system may be able to make a
tentative diagnosis. If the third case is true and all
the retrieved patients have the same diagnosis, it is
very likely that this patient should also get the same
diagnosis; we might even be able to extract a diag­
nostic rule for this condition, which could be added
to a microcomputer-based expert system. Finally, if
the fourth case is true, then the system knows that it
cannot come up with a definitive answer, and has
several options: It can acquire more information
(e.g., order blood tests), it can choose the most likely
diagnosis, or it can propose working with an uncer­
tain diagnosis (e.g., if it thinks the patient might
have pneumonia, but is not certain, it can suggest
prescribing antibiotics as a precaution).

Thus, memory-based reasoning, as applied to
similarity-based induction, seeks to make decisions
by "remembering" similar circumstances in the past.
This is done by counting c6mbinations of features, .

5 This is the complicated part of the algorithm. In general, a particular diagno­
sis will correspond to a range of values for a predictor. If both the new
patient's value and a particular record's value tend to suggest the same diag­
nosis, the "distance" measure between the two predictors should be small,
whereas if the two values are different, and the new patient's value rarely if
ever occurs with the diagnosis in the record, the distance between the two
should be large. The "weight" measures how important the predictor is: If the
partiCular predictor value is associated only with this diagnosis. then the
weight should be high, whereas it should be low if the same predictor value is
correlated with many different diagnoses. Consider body temperature as a
predictor: 98.6 and 98.8 would have a small distance between them, but a
very low weight in predicting, say, cancer; 103.0 ;:Ind 104.0 have a fairly large
distance between them, but also have quite a high weight for predicting
diseases that are associated with high fevers.

December 1986 Volume 29 Number 12

Special Issue

using these counts to produce a metric, using the
metric to find the dissimilarity between the current
problem and every item in memory, and retrieving
the best matches. When implemented on the Con­
nection Machine system, this takes lot n time. Since
neither the hardware nor the processing time re­
quired grows at a prohibitive rate, memory-based
reasoning scales to arbitrarily large databases.
Memory-based reasoning degrades gracefully when
it cannot come up with a definitive answer to a
problem: It may respond that no answer is possible,
give one or more plausible answers, or ask for more
information.

BACKGROUND: AI PARADIGMS
Memory-based reasoning is related to a number of
other subfields of AI, such as expert systems, ma­
chine learning, and "connectionist" research. It is
also related to several fields outside of AI proper:
statistics, cognitive science, information science, and
database research. Here we will explore this work in
the context of AI.

For 30 years heuristic search and deduction
have been the dominant paradigms in the central
research areas of AI, including expert systems,
natural-language processing, and knowledge repre-·
sentation. This paradigm was applied to a wide
range of problems, and met with many early suc­
cesses, including the General Problem Solver [32],
the Geometry Theorem Prover [9], the MYCIN ex­
pert system for medical diagnosis [42], resolution
theorem proving [35], and parsing with Augmerlted
Transition Networks [47]. Each of these programs
depended on searching for the right set of operators.
to reach a goal state. Researchers have progressed by
devising methods for specifying the operators, refin­
ing the structure of the information they operate on,
and improving control over which operators are ap­
plied in each situation. Expert systems are solidly
within this paradigm: In an expert system, operators
are generally called rules, and the goal state is a
decision (e.g., a diagnosis in a medical expert system)
or action (as in an expert system designed to control
a process). The AI languages Planner [10], Micro­
Planner [44], and Prolog [18] all embody some var­
iant of heuristic search with backtracking as their
central control mechanism.

The reasons why this paradigm has dominated
the field are not difficult to understand in retrospect.
AI originated in the early 1950s and was strongly
influenced by work on the analysis of human
problem-solving protocols in psychology [26] and AI
[31, 33]. Humans experience problem solving as trial
and error: Much effort seems to be spent in deciding

Communications of the ACM 1215

Special Issue

which operations to apply and in recovering from
the consequences of wrong choices. At least for
fairly small, well-defined problems, this model
proved a good match to the abilities of von Neumann
computers, which could perform small, well-defined
operations, one at a time.

Problems with the Heuristic Search Paradigm
Although it is clear that intelligent behavior often

. resembles heuristic sea-rch, at least at a gross level,
there is no reason to suppose that heuristic search
plays much of any role in the processes that under­
lie the operations of consciousness. As pointed out
frequently by such critics of AI as Dreyfus [5], it is
the underlying processes that account for the vast
range of human behavior: Only a few kinds of plan­
ning and problem-solving tasks are accounted for by
heuristic search methods, while in day-to-day life a
vast range of our aetiyities is handled by very quick

·decision-making processes that involve no explora­
tion of alternatives-where the reasons we give for .
taking these actions are often justifications gener­
ated in retrospect. Heuristic search carinot neatly
explain the reasons for actions that we attribute to

·intuition, nor can it explain the wide range of ac­
tions that we can perform within 200 milliseconds,
which include such problem-solving activities as

· goal and operator selection, in addition to everyday
tasks such as reacting to complex situations while
driving, using tools and utensils, and answering

• 6questions about £acts or experIences.
Moreover, practical applications of the heuristic

search/deductive reasoning paradigm have had only
limited success to date. (See [45] for an extended
discussion of the problems and state of the art in
expert systems.) Knowledge acquisition, or the proc~ss

of identifying and formalizing rules, remains an art.
No truly automatic knowledge-acquisition scheme
has been devised; instead, knowledge engineers must
collaborate with expert informants7 in the domain of
application, training them to think about their deci­
sions and actions in terms that can be turned into
rules and knowledge bases. This process often takes
a very long time (a year or more). In the end the
performance of such sys~ems has often been disap­
pointing. Rule-based expert systems are "brittle"­
they tend to fail badly for problems even slightly
outside their area of expertise and in unforeseen
situations. The systems are not capable of detecting
patently absurd conclusions, unless rules are explic­
itly inserted to detect them.
e As pointed out by Feldman [7]. in order to act or decide within 200 milli­
seconds. the total length· of the longest path between input. sensors and motor
effectors can involve no more than about 100 neurons. ThlS seems to preclude
neural backtracking.

7 Except. of course. where the knowledge engineer is also an expert in the
domain of application.

1216 Communications of the ACM

Mainstream Learning in AI
Because the scope of AI systems is limited until
they can learn to extend themselves from expe­
rience, learning has always been a major area
of research in AL8 Most of this work falls into
two "mainstream" camps: similarity-based and
explanation-based learning. Similarity-based learn­
ing has generally been expressed as the induction of
either rules or class definitions [20, 24, 28, 34] from
examples. The archetype for this paradigm was
Winston's ARCH program [46], which inferred the
definition of an arch from a series ofexamples. Of
special relevance to our work is Lebowitz's system
for discovering categories in a database combining
voting districts' demographics and legislative voting
records [19]. Cheeseman has proposed a variation on
similarity-based reasoning that creates a statistical
model of a database, then uses this model to make
decisions [3]. He claims that this decision procedure
can be proved optimal.

Similarity-based learning and memory-based rea­
soning are analogous in that they solve the same
problem: using syntactic patterns in a database to .
solve classification and decision problems. They dIf­
fer substantially in mechanism, in that similarity­
based learning uses rules as an intermediate struc­
ture, whereas memory-based reasoning operates
directly on the data.

The other primary school of learning research is
the explanation-based learning paradigm [4]. This is
an incremental, knowledge-based approach, in
which a system learns by explaining unanticipated
events. The stated goal is "one-shot learning," in
which le.arning can proceed from a single example.
The classical example is learning the description
of a cup: A program is given a structural description
of a cup, ,the purpose of a cup (it allows one to
drink), and domain knowledge sufficient to find the
connection between structure and function. The
program discovers that the handle allows the cup to
be lifted, that the base prevents the cup from tipping
over, and that the bowl allows it to contain liquid.
Other aspects of the cup's structure, such as its
color, composition, and precise shape, are not used
in constructing the explanation and are hence left
out of the general description of a cup. (See [27] and
[29] for recent treatments of this problem.)

Explanation-based learning presupposes strong
domain models, which are conventionally imple­
mented through rules or through data structures
traversed by a fairly uniform deductive proce­
dure. Ultimately, we will want to incorporate
explanation-based techniques into a general theory

8 References [24] and [25] offer broad collections of articles on current
research issues in learning.

December 1986 Volume 29 Number 12

of memory-based reasoning. To do so now, however,
would be premature, as we are working at a level
where such domain models are unavailable.

Current work on case-based reasoning [1, 17,40]
is also relevant, as it combines memory with.
explanation-based learning to allow a program to
learn by remembering and analyzing its mistakes. In
this model, when faced with a difficult task a prob­
lem solver will search memory for a previous case
where an analogous task arose, then try to adapt that
solution to its current needs. Like explanation-based
learning, it requires a strong domain model.

Other Paradigms for Learning
Since the late 1970s a great deal of increased atten­
tion has been given to systems that learn using enti­
ties other than symbolic ones. This work harks back.
more to the perceptrons and pattern recognition of
the 1950s and early 1960s [36] than to the "physical
symbol system" models of mainstream AI [30]. Some
research, for example, Holland's "genetic algo­
rithms" systems [14], has persisted since the early
1960s; most (e.g., [7, 13]) had its origin much more
recently. The extensive literature on "associative
memory" [13, 16] is also relevant, but these systems
are generally oriented more toward deduction than
induction.

The bulk of the work in nonsymbolic learning has
taken place in the field loosely called connectionism.
Connectionist systems involve computations using
large networks of linked nodes where weights on
links and nodes are the loci of learning and compu­
tation. There are two broad interests in connection­
ist systems: representation [6, 8] and learning [13,
15]. (See also [22] for a comprehensive treatment.) In
general, nodes are assigned numerical "activation
levels," and a means of computing outputs from the
sum of the input link activations (e.g., thresholds or
logistic functions). Links are directed and have
weights; node outputs are multiplied by each link's
weight to compute that link's influence on the node
it ends on. Representation concerns the mapping be­
tween concepts and nodes, and is outside the scope
of this article. .

Learning in a connectionist network involves ad­
justing the link weights or node thresholds to new
values so that the computations of the network will
more closely match desired performance. Although
there are a variety of ways for a .connectionist net­
work to learn, we will only consider here a method
called back propagation error learning [37]. In this
method, an input is presented to a system that has
random link and node weights. The output gener­
ated for this input is compared with the desired out­
put, and an error signal is computed for each of the

Special Issue

output units. This output error is then propagated
back to the links that feed the output units, then
accumulated at internal hidden units (which are nei­
ther input nor output units). This error is then prop­
agated again until it reaches the input units. As er­
rors propagate past links, their weights are adjusted
so as to lessen errors. This method, a kind of stage­
by-stage steepest descent, seems to provide near­
optimal solutions, and to provide them faster and
in a conceptually clearer manner than in earlier
connectionist models.

NETtaik [41] was one of the first systems to use
back propagation methods. NETtaik performs a word
pronunciation task similar to the one solved by
MBRtalk, described below, the difference being that
it operates in the connectionist paradigm, whereas
MBRtaik operates in the memory-based reasoning
paradigm. A series of words are presented to NET­
talk, and its output for each is compared to the "cor­
rect" pronunciation from Merriam-Webster's Pocket
Dictionary [23]. NETtalk uses the results of this com­
parison to adjust its internal weights, so that its per­
formance gradually improves.

Internally, NETtaik consists of a three-layer cort­
nectionist network. The three layers are a set of in­
put units, a set of hidden units, and a set of output
units. Each of the input units corresponds to a posi­
tion of a letter in a word. There are seven sets of
input units; in general, NETtalk's task is to provide a
pronunciation for the letter in the center set of units
based on its letter and the three letters that precede
and the three letters that follow it. Each of the
groups of seven input nodes consists of nodes for
each of the letters of the alphabet, space, and so on.
Each of the output units corresponds to a phonetic
feature. In the task, input words are presented one at
a time and "slid across" a window of input units so
each of their letters appears in succession in the .
center set of units. Errors are accumulated at each of
the output units, and back propagated after each let­
ter is processed.

After 30,000 trials, NETtaik generated the correct
phoneme 94 percent of the time for words it had
already been "taught"; it generated the correct
phonemes 78 percent of the time on novel words.
The actual number of fully correct words is, of
course, substantially less.

PRONOUNCING ENGLISH WORDS
The first task we discuss here is that of pronouncing
novel words, using a database generated from 4438
English words and their pronunciations. The pro­
gram that performs this task is called MBRtalk. Each
of the 4438 words is used to generate as many data­
base records as it has letters. Each of these records

December 1986 Volume 29 Number 12 Communications of the ACM 1217

Special Issue

consists of a letter. the preceding 4 letters. the suc­
ceeding 10 letters. the phoneme and stress for the
letter. and the preceding 4 phonemes and stresses.9

The program then tries to infer the pronunciation of
words not in the database.

Discussion of the Task
MBRtalk achieves an 86 percent correct phoneme
rate on novel words; however. this figure can be
somewhat misleading, so we have done most of our
calculations on the percentages of words done cor­
rectly. MBRtalk yields a full word performance of
47 percent correct, 21 percent marginally wrong, and
32 percent wrong.

The 94 percent correct phoneme rate of NETtalk
was achieved by testing with the same set of words
on·which it was trained. For MBRtalk this kind of .
test makes no sense, since an input word that ex­
actly matched a word stored in the system would
have zero distance and would always dominate the
decision making. Consequently, testing on the words
in the database is too easy for our system (though
an interesting and meaningful test on NETtalk).
For novel words, the performance of NETtalk and
MBRtalk seems comparable.

NETtalk and MBRtalk both take advantage of reg2­
ularities in pronunciation, but no system can ever
achieve perfect performance on this task. For exam­
ple, there are irregular words, such as though versus
tough. If such irregulars are omitted from the train­
ing set, then the system has no way of reliably pro­
nouncing them. If, on the other hand, the irregulars
are part of the training set, they create noise that
might prevent the system from se~ing the correct
pattern. Furthermore. English has borrowed many
words from other languages, often retaining their
original pronunciations. No automatic system could
properly infer the pronunciations of filET versus
targET, vILLA versus tortILLA, piZZa versus fiZZy.
unless it had also been programmed to recognize the
likely language of origin. Thus, the pronunciation
task is an e.xtremely challenging one for any induc­
tive algorithm, as the data are noisy, the program is
working with incomplete information, and such
rules as do exist always have exceptions.

MBRtalk and NETtalk start with the same set of
words and pronunciations. A pronunciation key is

. shown in Appendix A.

THE BASIC ALGORITHM
1n this section we will present the current algorithm
for memory-based reasoning. Our goal is not so

9 To simplifY the discussion. we sometimes simplify the record to include only
the prece~l~g three letters. the succeeding three letters. the phoneme. and the
stress. ThiS IS the representation used by NETtalk and in preliminary versions
of MBRta~k. The reasons for the expanded record format are explained in the
next sectIon.

much to produce the best possible algorithm as to
produce one that is adequate to test the memory­
based reasoning hypothesis.10

The memory-based reasoning hypothesis is that
reasoning may be accomplished by searching a data­
base of worked problems for the "best match" to the
problem at hand. This requires a means of judging
how closely two situations match, leading to the
topic of metrics. A metric· is a distance measure A
satisfying the following four properties:

A(a, b) ~ 0

A(a, b) =. A(b. a)

A(a, a) = 0

A(a, b) + A(b, c) ~ A(a, c)

The implementation of memory-based reasoning de­
pends on finding a suitable definition of A.

Notation
Before we can discuss metrics, we must define some
terms. A record is a structured object containing a
fixed set of lields. We use Greek letters (T, p) for
records, and italics for field names (n, pl. A field may
be empty, or it may contain a value. We use quoted,
"typewritten" letters (' a " 'b') for specific values,
the letter u for nonspecific values, and" for empty
fields. Field Iof a record pis written p.I. The set of
possible values for a field I is written Vf. A nonspe­
cific value is represented by an italic letter (Vl). A
database D is a set of records.

A target is a recQrd T containing some empty
fields. The empty fields are called goals, .and the
nonempty fields are called predictors. The set of goals
is written Gu and the set of predictors is writtenPT •

A leature is a combination of a field and a value,
such as [f = v]. We use features to restrict a database
to a subset, as in D[f = v]. We can count the number
of items in the ·full database, as ID I. or in a re­
stricted database, as in ID[f = v] I.

Representations for Words
For the pronunciation task, we have one record for
each letter in a word. Each record has nine fields:
the previous three ~~tters (field n - 3, n - 2, and
n - 1), the letter itself (field n), the next three letters
(n + 1, n + 2, and n + 3), the phoneme assigned to
that letter (field p), and the stress (field S).11 The
seven letter fields (n - 3, ... , n + 3) are predictors,
while the phoneme and the stress fields (p and s)
to R~aders well versed in mathematical statistics. decision theory. or auto­
matIc pattern recognition may object that this algorithm is ad hoc in the sense
that we cannot offer any rigorous explanation of why it works. The point is
well !aken. and more rigorous examination will probably produce a better
algonthm. but nevertheless this algorithm produces the right answer often
enough to support the memory-based reasoning hypothesis.
t~ As noted in Appendix A. this is a simplification of the actual representa­
tIon.

1218 Communications of the ACM December 1986 Volume 29 Number 12

Special Issue

are goals. The possible values for the letter fields
(Vn-3, •.. , V~+3) are the letters of the roman alphabet
plus the blank (denoted.). The possible values of
the phoneme field (Vp) are the phoneme codes noted
in the previous section, plus the silent (-). The pos­
sible values of the stress field (Vs) are ' 1 ' (primary
stress), '2' (secondary stress), '0' (unstressed), ,+,
(rising), and ,- (falling). For the world file we get I

the following four records:

A shorter version is written as follows:

o ···file f + 0
o . ·file· A 1 0
O·file··l-O
o file··· - "-'0

The OverlapMetric
The simplest measure of dissimilarity between two
records 'T and p is the number of fields f for which
they have i::I.ifferent values. We call this the overlap
metric. It is not a particularly good metric, but makes
a convenient starting point. We define it as follows:

A('T, p) = L 6('T·f, p./)
fEP.

This metric is not very useful because it assigns
equal weights to all fields. To illustrate this, we took
the record ¢ .. .'file XX¢.and applied the above
metric to a database of 8192 records. The following
are t.he 10 best matches:

Obviously, all fields should not be equal in impor­
tance.

December 1986 Volume 29 Number 12

The Weighted Feature Metric
Features differ in importance because they differ in
the strength with which they constrain the values of
goal fields. For example, the feature [n = 'f'] con­
strains the field n to be 'f Among records satisfy­I •

ing this constraint, the only observed values of the
field p will be the phonemes 'f and ,- I (silent).I

Thus, [n = 'f'] is very useful in predicting 'T.p and.
should be given a high weight. On the other hand.
the feature [n + 3 =' e '] is not a good predictor
of'T.p.

Different values of a single predictor field can also
differ in how strongly they constrain the values of a
goal field. For example. the feature [n = I a '] con­
strains 'T.p to be one of a relatively small number of
phonemes. such as 'a I (bAr). 'e I (bAy). I c I (All).
or I x I (About). Other values of 'T.n impose stronger
constraints on 'T.p; as noted above. [n = 'f'] con­
strains 'T.p to be either I f or '-'.I

We incorporate this into our metric by giving dif­
ferent weights to different features, starting with a
predictor field f, a goal field g. a target 'T. and a
database D. We determine the feature's weight
w1(D. 'T./) by measuring the strength of the con­
straint imposed by the feature [f == 'T.f] on the field
g. The specific method is to restrict the database to .
D[f = 'T./], find the frequencies of the various values
of g. square them, sum them. and take the square
root of the result. The resulting metric is shown
below:

Ag(D. 'T. p) = L 67(D. 'T·f. p./)

fEP.

6g (D ' f) = {'T.f = p.f 0
f • 'T'I' p. otherwise w7(D. 'T./)

wg(D, 'T./) = VL (IP[f = 'T·f][g = v] 1)2
f . "ev, ID[f = 'T.!] I

Let us calculate w~ and W~+3 for the record
¢ .. ·file XX¢. We start with a database of
8192 records. The first step is to restrict the database
to [n = 'f']. leaving 120 records. We then count the
number of times each possible value v of the field p
occurs and use the answer to compute the weight;

t,: ";

, ~ •• I '

.. - - . - .' -­
Total = 0.820.

Weight = 0.906.

We can also db this calculation for [n + 3 = 'e ']
as shown in Table I (next page). This metric is ap-

Communications of the ACM 1219

Special Issue

TABLEt

plied to a database of 8192 records. The 10 n~arest
matches to <> .. ·file >. XO are shown below. The
improvement over the previous metric is clear:

Value Differences
. The metric shown above is still too strict in that it
is based on the precise equality of the values of pre­
dictor fields. In some cases different values of a
predictor field will be equivalent. For example, the
letter •9' may yield four different phonemes: '9'
(as in Globe), 'J' (as in German), 'f' (as in rbuGh),
and ,-, (as in althouGh). Let us consider '9' and
'J'. We find that gy, ge, and gi are usually pro­
nounced 'J' whereas all others are generally
pronounced '9'. Thus, for determining the pro­
nunciation of 'g', the letters 'e', 'i', and 'y I
are similar to each other, and different from all
other letters.

Suppose, now, that we are trying to pronounce the
word gypsum. Using the above metric, we get the one
word in the database that contains 'gy' (gypsy), as
well as a more or less random assortment of other
words containing the letter 'g'. As most' 9 , 's
(taken at random) are hard, the memory-based rea­
soning algorithm will conclude that the 'g' should
probably be pronounced with the hard sound. The
output shown below is the result of running the
target <> .• ·gyps <> against the restricted database

1220 Communications of the ACM

D[n = 'g' J(the reason for this restriction will be
explained in the next section):

We can do better than this by modifying the met­
ric to take into account similarity of values. What
we need is a measure of the difference of two fea­
tures, so that the pen~lty assessed a field will be the
product of the field's weight times this difference
measure.

Suppose we are given a target T, a record p, and a
database D. To compute the difference df between
two predictive features [f =T·fJ and [! =p.fJ, we
calculate the frequencies of the various possible val­
ues of the goal field g in the restricted databases
D[! = T.fJ and D[! = p.fJ, subtract them, square the
results, and sum over all values of g. This is the
value difference metric:

,:l8(D, T, p) = ~ of(D, T.!, p.f)
fEP.

of[D, T.!, p~f) = df(D, T.!, p.f)wf(D, T.f)

w8(D, T.f) = "\ / ~ (I D[! = T·fJ[g = vJ 1)2
/ V "eV" 1D[!= T·fJ I

df(D, T.!, p.f)

= ~ (I D[! =T.!][g = vJ ,_ 1D[f = p.!][g =vJ 1)2
veV, 1D[f = T·fJ I ID[! = p·fJ I

December 1986 Volume 29 Number 12

For example, to calculate the difference between
•a' and •e' in distinguishing between 9 I andI

" J I, we calculate the frequences of I g' and •J •
for each, then subtract, then square. This yields a
field difference of 2. For •e' and •y' , the same
calculation yields adifference of 0:

When we apply this metric to our original prob­
lem, we find more support for the notion that the
• 9 I .in gypsum is to be pronounced 'J':

Restricting the Database
If predictors always acted independently in con­
straining the values of goals, the algorithm we have
described would be sufficient. Such is not the case,
as the combined effect of two predictors is often
quite different than their effect separately. For ex­
ample. the combination of the feature [n = I g.]
with [n + 1 = •a'] lets us predict that the phoneme
p will be I g' and not •J • . However, if we look at
the feature [n + 1 = I a'] in isolation, the effect
vanishes.

The solution to this problem lies in a technique
called restriction-applying the memory-based rea­
soning algorithm not to the entire database, but to a
sUbset. We may obtain this subset by restricting the
value of a predictor field or by restricting the value
of the goal field. These two techniques are called
predictor restriction and goal restriction.

Predictor restriction is accomplished by finding
the most important field (as judged by the weight
function w1) and restricting the database to those
records having the same value in that field as the

December 1986 Volume 29 Number 12

Special Issue

target record. In the "gypsum" example shown
above, we calculate the weight for each of the
predictor fields and find that the feature n has
the highest weight. The value of n in the record .
o ... gyps >. >. 0 is •g', so we restrict the database
to [n =g). We then apply the field difference metric
as described above.

Goal restriction is accomplished by using the
memory-based reasoning algorithm to discover plau­
sible values for the goal field, then restricting the
database to records containing one of those values in
their goal fields. In our example of "gypsum," apply­
ing the field difference metric to the entire database
yields •g' and •J' as plausible values for p. If we
restrict the database records having either •g' or
•J' as their phonemes and then apply the field .dif­
ference metric to the reduced database, we get re­
sults similar to those shown for predictor restriction.

Summation of Evidence
Once we have found the dissimilarity between the
target and every record in the database, we need to
decide on the most likely value for the goal field.

The first step is to retrieve the records that most
closely match the target. We might do this by setting
a threshold and retrieving all reCords with smaller
dissimilarity ratings. Alternatively, we could re­
trieve the n closest matches, for some suitable value
of n. At present, we use the latter method, with
n= 10.

.Having retrieved the records most closely match­
ing th~ target, we look at their goal' fields. If the goals
are all the same, we can be confident that the value
they contain is the correct answer. Sometimes, how­
ever, several different values olthe goal field will be
observed. In this case we must decide which of these
values is preferred. We assign each record a weight
equal to the reciprocal of its dissimilarity12 and sum
the weight of each observed value of the goal field.
The example below shows this weighting method:

lZ We fi"'l add 0.01 to avoid dividing by zero. We could also give a dissimilar­
ity oJ zero infinite ·weight. The laUer alternative is appropriale i£ the value oJ
the goal field is a function of the values of the predictor fields. This condition
does no4 hold for lhe pronunciation task as fonnulated here. as a word may
have two differenl pronunciations.

Communications of the ACM 1221

--

Special Issue

Totaling the weights for I 9 I and I J ' , we get the
following:

:'1 t.~·.·.\::'_,"'tl ~.-. . ..~t"''''' . f:? J';:;
- _.. - - _. . - - - ---'

The result of this experiment can be summarized
as follows: "The correct phoneme is probably I J I ,

but it might be I 9 I ."

Implementation on the Connection Machine System
Although a full description of implementation of
these metrics on the Connection Machine system
is beyond the scope of this article, a brief note is
in order. The dominant computation in calculat­
ing this metric is counting the number of occur­

.rences of each predictor-value/goal-value pair
ID[! =p.!][g = p.g] I. This is done in parallel for
every possible value of p.! and p.g using a histogram­
ming algorithm, which takes approximately 16 ptilli­
seconds.13

Suppose we have the following database:

The next step is to segment the sorted database
into regions where both the predictor (n + 1) and the
goal (p) are uniform:

We first select the values of the predictor field
n + 1 and the goal field p:

We then sort the records. This takes log2 n time:

t3This assumes 16K records on a 16K-processor Connection Machine.

Finally, the length of each of these segments is
calculated. This takes log n time:

The time required to perform this set of operations
is dominated by the sorting step, which takes log2 n
time.

The aim of memory-based reasoning is to fill in
the goal fields of a target record by retrieving records
from a database. The basis of the method is finding
the dissimilarity between the target record and each
of the data records. The dissimilarity measure is cal­
culated by assigning a weight to each field and a
value difference measure to each value occupying
those fields. In order to allow for the interaction of
pairs of fields, we may employ one of two restriction
methods. In predictor restriction, we operate on a
subset of the database having the same value as the
target for the most important predictor field. In goal
restriction, we apply the dissimilarity measure to the

1222 Communications of the ACM December 1986 Volume 29 Number 12

Special Issue

full database to find some plausible values for the
goal field, restrict the database to those records hav­
ing one .of these plausible values, and finally apply
the dissimilarity measure to this subset. The result
of all this is a set of 10 (or so) data records that are
similar to the target record, plus dissimilarity mea­
sures. The values of their goal fields, weighted
according to their dissimilarity, are the plausible
values for the goal.

EXPERIMENTAL RESULTS
We started the MBRtaik experiment with a diction­
ary of slightly over 20,199 words. We randomly se­
lected 4,438 words, with a total of 32,768 letters, for
use as the MBRtaik database. The memory-based
reasoning algorithm was then applied to 100 words,
totaling 772 letters; 86 percent of the phonemes
(43 percent of the words) matched the dictionary
pronunication exactly. Humans, listening to the out­
put of the program played through a DECtalk8

speech synthesizer, judged the pronunciation as
being at least as good as the dictionary pronuncia­
tion 47 percent of the time, slightly mispronounced
21 percent of the time, and badly mispronounced
32 percent of the time.

For reasons stated previously, the pronunciation
task is fundamentally impossible: English pronuncia­
tion is too irregular for anysort of inductive reason­
ing to work all the time. Nevertheless, this is the
sort of difficult, noisy real-world problem that we
want to be able to solve.

The Representation
When we began work on the pronunciation task, we
used a seven-letter window (as in NETtalk). Each
window had a central letter, the three preceding
letters, the three following letters, the phoneme as­
sociated with the central letter, and the stress of the
central letter. The seven letter fields were used as
predictors, while the phoneme and the stress were
used as goals.

After a certain amount of work, we modified this
representation. First, we noted that a seven-letter
window was inadequate to determine the pronunci­
ation of a word, because to.pronounce the first sylla­
ble one often needs to know the suffix of the word
(e.g., observatory = xbz.;Rvxtori versus observation
= cbsxrveSx - n). Therefore, we extended the win­
dow to 15 letters:.a central letter, the 4 preceding
letters, and the 10 succeeding letters. .

In addition, we noted that there were cases where
the system produced incoherent values for succes-

DECtaik is a trademark of Digital Equipment Corporation.

sive phonemes. For example, the sequence of letters
, qui' can, depending on whether it is stressed or
not, be pronounced either 'Q - I' or 'k* - ,. In cases
where the stress assignment was unclear, it was pos­
sible to get incoherent choices, such as 'Q - - , or
'k*1'. This was resolved by adding new predictor
fields: p - 4, ... , p - 1, which recorded the preced­
ing phonemes. We then work left to right, filling in
appropriate values of these fields as we go. We might
start with the following record:

o ... equipment·.· ..~.1). 0

Applying the memory-based reasoning algorithm,
we might get either' k' or 'Q' as the correct pro­
nunciation for 'q'. Assume we get 'Q'. When we
get to the next position in the word, this decision is
to be carried along:

o . ·eq u ipment··· .. 1Q). 0

We now apply the memory-based reasoning algo­
rithm to the letter 'u' and are assured of getting the
only coherent choice, which is ,-, (silent). The pre­
vious decision to pronunce.the 'q' as 'Q' has ef­
fectively determined the pronu~ciationof 'U'.

This change of representation improved the coher­
ence of MBRtaik pronunciations, the lesson being.
that in many cases all we need do to improve system
performance is to improve the representation; re­
programming or modification of an existing rule base
may not be necessary.

The Experiment

We now come to the primary experiment. As .

explained above, we used a 4438-word subset of

Merriam-Webster's Pocket Dictionary plus the memory­

based reasoning algorithm to pronounce 100 novel

words. We then compared MBRtaik pronunciations

against the dictionary's. The strictest possible stan­

dard of comparison is to require the two to be iden­

tical. Forty-three percent of the words met this

standard (86 percent of the phonemes).

A more realistic standard of comparison, however,
is the judgment of a native speaker of English. ffhe
output of the program, as evaluated by human
judges, is shown in Appendix B, p. 1226.) Many
words have several acceptable pronunciations. For
example, the word object may be pronounced with
the stress on either the first or the second syllable.
In such cases, the listeners were requested to mark
the two pronunciations "equally good." Also, in
some contexts two phonemes are indistinguishable.
For example, it is not possible to hear the difference
between the dictionary pronunciation of furniture
(' f -Rn1C-R- ') and that produced by memory-

December 1986 Volume 29 Number 12 Communications of the ACM 1223

Special Issue

based reasoning (' f - RnxC - R- '). In these cases,
the listeners marked the two pronunciations
"identical."

For this experiment, the program's pronunciation
and the dictionary's pronunciation were used to
drive a DECtaik speech synthesizer. The order of
presentation was randomized, so that the judges
could not tell which was which. They had several
possible replies: They could state that there was no
audible difference between the two pronunciations,
that the two pronunciations were different but
equally good, that one was slightly mispronounced,
or that either or both words were badly mis­
pronounced. They could listen to the two words as
many times as was necessary to make a decision.
The following·table summarizes the results of the
experiment. First, we have the percentage of the
words assigned by a plurality of the judges to each
category. Then we have the responses tabulated ac­
cording to whether the program's pronunciation was
judged good; poor, or bad.

Analysis
Some of the errors can be attributed to haVing insuf­
ficient information to choose the correct pronuncia­
tion. Pronunciation can depend on whether a word
is a noun or a verb, which is information that the
program does not have available. For example, the
program takes the word abject and pronounces
it as if it were a verb (' xb j Ekt '); Of the 53 mis­
pronunciations, 19 were due to this cause. In addi­
tion, foreign words that have been incorporated into
English are often pronounced according to the rules
of the language from which they came. Thus, the
program pronounces the word montage as if it were
English (' rna n t IJ - '). There were 6 errors in this
category.

There were three errors due to the program en-­
countering a rare combination of letters, such as a
word-initial IpS' (psychiatry).

In summary, out of the 100 words given to the

memory-based reasoning algorithm, 47 were pro­
nounced correctly, 21 were slightly mispronounced,
and 32 were badly mispronounced. Of the 53 words
that were mispronounced, 19 were due to the lack of
part-of-speech information, 6 were because the word
was from a foreign language, and 3 were because
they contained rare combinations of letters. Thus,
the reasoning procedure made 28 errors that it might
possibly have avoided.

Considering the difficulty of the task, we believe
this level of performance to be highly encouraging.
Further work in the pronunciation domain will con­
centrate on improving the representation (e.g., add­
ing part-of-speech information) and on isolating the
reasons for avoidable errors.

CONCLUSIONS AND PROSPECTS

Memory-based reasoning fits the Connection Ma­

chine system well because both the cost of the hard­

ware and the speed of execution for the algorithms

scale well with increasing database size: The cost of

the hardware is O(n log n) in the size of the data­

base, while the processing time is O(lot n).

On a sequential machine, both the cost of the
hardware and'the time required for processing grow
linearly with the size of the database. The linear
growth in processing time causes the time to make a
decision to become unacceptably large for sizable
databases. One solution to this is to build faster se­
quential machines. However, there are absolute lim­
its to how fast a sequential machine can be, and as
those limits are approached, the hardware becomes
extremely expensive.. '

Another solution is to use a vector machine.
Vector machines may work well for some aspects of
memory-based reasoning. However, unless we allow
the number of processors utilized to grow as the size
of the database increases, we get no more than a
constant speedup over a sequential machine.

If we allow the number of processors to grow as
the size of the database increases, then we have a
computer that is in accordance with our expecta­
tions for a truly parallel machine. At this point,
interprocessor communication becomes an issue.
A highly interconnected communication scheme,
such as a hypercube or butterfly, is necessary to
allow the counting operations to be performed in a
reasonable amount of time (lot n).

One issue remains: whether to use a fine-grained
SIMD machine or a large-grained MIMD machine.
The memory-based reasoning algorithms are intrin­
sically SIMD, so there is no need for the added cir­
cuitry necessary to support MIMD. In addition, the
memory-based reasoning algorithms are communi­

1224 Communications of the ACM December 1986 Volume 29 Number 12

cation intensive. A fine-grained architecture will
have more communication nodes and a greater total
communication bandwidth than a large-,8I'ained ar­
chitecture with the same amount of hardware.

Thus, the ideal machine for memory-based rea­
soning would have a parallel, highly interconnected,
fine-grained SIMD architecture.

In the long run, we believe that memory-based
reasoning systems can play an important role in
building truly intelligent systems, but we have much
to do and learn before such a goal can be achieved.
In the short run, memory-based reasoning systems
should be able to function like expert systems in
domains where there are databases of situations and
outcomes/actions. Possible application areas include
medical diagnosis and proposal of diagnostic tests,
weather forecasting, credit decision support, invest­
ment advising, and insurance risk assessment.

There are many advantages:

• No expert is required; a system builder need only
identify and mark database contents according to
whether they are symptoms or features of situa­
tions, outcomes or actions, or optional tests that
can be ordered.

• Memory-based systems can form hypotheses on
the basis of even a single precedent, something
rule-based systems cannot do-rules are inher­
ently summaries of regularities among classes of
items.

• Memory-based reasoning systems "know when
they don't know": if no items in memory are
closely related to the current item being analyzed,
then the system will be able to recognize this fact
and tell the user. This fact should also allow
memory-based reasoning systems to degrade
gracefully.

• Memory-based systems should require far less
time to implement. However, once constructed,
rule-based systems can operate on much less pow­
·erful hardware. Thus we also intend to explore
the automatic generation of rules by memory­
based systems.

Computer learning has generally stayed within the
heuristic search/deductive reasoning paradigm:
Most learning algorithms try to derive a set of rules
from a body of data. Memory-based reasoning, in its
pure form, differs from traditionalleaming methods
in that no rules are ever created. This has three
advantages: .

• Deductions made by the system are achieved
without the intermediate use of rules as a repre­
sentation, so there are fewer opportunities for in-

Special Issue

advertently introducing inaccuracies, such as
those that result from the combining "confidence
levels" for a chain of rules.

• Rule generation has a combinatorially explosive
search space of possible rules to contend with,
while memory-based systems can focus their anal­
ysis on the cases at hand. It may be that, to cap­
ture a large knowledge base, so many rules are
needed that the rule-generation process will never
finish; there is never any certainty that the result­
ing rule set is complete, and the resulting system
may fail at any moment. With a memory-based.
system, the data used as the basis of reasoning are
always available. Therefore, within limits imposed
by the accuracy of the retrieval mechanism and
the contents of the database, errors of omission
should not occur.

• Rule-based systems often include invented vari­
.abIes to insure proper sequencing of rules. Order­
ing problems and unexpected interactions are not
a difficultyin memory-based reasoning systems..

Both learning/rule-based systems and memory-
based systems are fundamentally limited by the da..,
tabases they work from and by their retrieval meth­
ods. There will be cases where a database is too
sparse to give meaningful answers, and there may be
cases where spurious correlations will give bad an­
swers. In both classes of systems, statistical tests can
guard against these problems. For both systems,
there may also be cases where the recall mechanism
fails to find all the relevant data. It is necessary to
take steps to ensure such recall failures do not intro­
duce systematic biases.

It isn't quite fair to compare connectionist re­
search with memory-based reasoning, since the
goals of each are so different. There are, however,
several inherent advantages to memory-based rea­
soning:

• Memory-based systems require no training; they
begin to produce results immediately.

• Memory-based systems are understandable and
. can potentially explain why they act as they do;

foreseeable connectionist models will all be very

difficult to analyze.

• Since connectionist models average the values of
features, they may permanently lose some infor­
mation that is present in the particular sets of fea­
tures that co-occur in episodes. Memory-based sys­
tems may be inherently more powerful.

We intend to pursue this research on real medical,
weather, and financial databases, and look forward
with excitement to the future of this technology.

December 1986 Volume 29 Number 12 Communications of the ACM 1225

Special Issue

auXiliary f Fight N adjacENt U ambUsh
marZipan G aloNG n Neat U tOO

• anyOne 9 Great 0 annOY v aboVe
@ abAck h Hot 0 cOld W OUt
A file I bit p Pet W Wet
a cAr i beAt Q QUaint x affiX
b Bat J Jet R accuRacy x Allow
C CHurch K anXious r Red Y cUte
c OUght k cat 5 daSH y Yet
0 baTHe L able s Sleep z azure
d Dull 1 Lead T THink z siZe
E bed H albinisM t Tin t resUlt
e mAke m Meat

achrOO'iatic @k-rXlll@tIk @k- r:-xlll@tIk latchet l@-C-xt l@-C-xt
admonition @dmxnISx-n @dmxnISx-n leaf li-f li-f
angry @Ggri @Ggri masquerade Ill@skx-red­ III@skx-red­
arable @rxbL­ @rxbL­ mate mate met-
ballad b@l-xd b@l-xd mull m-L­ m-L­
carnivorous karnIvxrx-s k@rnIvxrx-s munificent mYnIfxsxnt IIIxnIfxsxnt
celery sElxri sElxri natatorium netxtorixm netxtorixlII
clung klxG­ klxG­ numerable nYmxrxbL­ nYmxrxbL­
coalfield ko-lfi-ld ko-lfi-ld parquetry parkx-tri parkx-tri
confidential kanfxdEnC-L kanfIdEnC-L party parti parti
contrite kantrAt­ kantrAt­ pepsin pEpsxn pEpsxn
drum dum drxlII pretty prIt-i prEt-i
enigmatic EnIglll@tIK EnIglII@tIk pride prAd­ prAd­
eternal It-Rn-L It-Rn-L qUalification Q-alxfxkeSx-n Q-alxfxkeSx-n
forlom f-Rlcrn forlcrn round rW-nd rW-nd
formative fcrmxtIv­ fcrmxtIv­ scaleless skel-lxs­ skel-lxs­
frappe fr@p­ fq~p­ soothsayer su-T-se-R ·su-T-se-R
furniture f-RnIC-R­ f-RnxC-R­ stupefy stYpxfA stYpxfA
furrier f-R-i-R f-R-i-R symbolization sImbxlxzeSx-n sImbxlxzeSx-n
gratification gq~txfxkeSx- n gr@txfxkeSx-n tester tEst-R tEst-R
grin grIn grIn veronica vxranIkx vxranIkx
impossibly Impas-xbli Impas-xbli whitish w-AtIS­ w-AtIS­
inebriate Inibrixt­ InEbriet­ Woodpecker wU-dpEk-R wU-dpEk-R
kiss kIs­ kIs­

1226 . Communications of the ACM December 1986 Volume 29 Number 12

Specia/lssue

@lxft
bEd-xg-L-d
kansxnt
hxmorx-s
m@rxnx
mYtIlxtor
rElxX

December 1986 Volume 29 Number 12 Communications of the ACM 1227

Special Issue

Acknowledgments. Many thanks to George Robert­
son and Guy Steele for reading drafts of this article;
to the Connection Machine System Group for pro­
viding the hardware; to Charlie Rosenberg for'
providing us with the database; to Jim B!liley,
Gregory Wilcox, Brewster Kahle, Sarah Ferguson,
Carl Feynman, and Danny Hillis for listening to
MBRtaik output and evaluating it; to Chris Maruk
fOf helping prepare the manuscript; and to Robert
Thau and Donna Fritzsche for general assistance.

REFERENCES
1. Alterman, R. Issues in adaptive planning. Rep. UCB/CSD 87/304,

Computer Science Division, Univ.of California at Berkeley, July
1986.

2.	 Charniak, E. The Bayesian basis of common sense medical diagnosis.
In Proceedings of the 3rd National Conference on Artificial Intelligence
(AAAI-83) (Washington, D.C., Aug. 22-26). American Association for
Artificial Intelligence, Menlo Park, Calif., 1983, pp. 70-73.

3. Cheeseman, P. A method for computing Bayesian probability values
for expert systems. In Proceedings of the 8th International Joint Confer­
ence on Artificial Intelligence (Karlsruhe, West Germany, Aug. 8-12).
1983, pp. 198-202.

4. DeJong, G., and Mooney, R Explanation-based learning: An alterna­
tive view. Mach. Learn. 1,2 (Apr. 1986), 145-176.

5. Dreyfus, H., and Dreyfus, S. Why computers may never think like
people. Technol. Rev. 89, 1 (Jan. 1986),42-61.

6. Fahlman, S.E. NETL: A System for Represe~ting and Using Real-World
Knowledge. MIT Press, Cambridge, Mass., 1979.

7. Feldman, J.A. Introduction to the special issue on connectionism.
Cognitive Sci. 9, 1 (Jan.-Mar. 1985), 1-169.

8. Feldman, J.A., and Ballard, D.H. Connectionist models and their
properties. Cognitive Sci. 6,3 (July-Sept. 1982), 205-254.

9. Gelerntner, H. Realization of a geometry theorem proving machine.
In Computers and Thought, E.A. Feigenbaum and J. Feldman, Eds.
McGraw-Hill, New York, 1963.

10. Hewitt, C. Description and theoretical analysis of PLANNER. Doc­
toral dissertation, Dept. of Mathematics, MIT, Cambridge, Mass.,
1972.

11. Hillis, D. The Connection Machine. MIT Press, Cambridge, Mass.,
1985.

12. Hillis, W.D., and Steel, G.L., Jr. Data parallel algorithms. Commun.
ACM 29,12 (Dec. 1986).

13. Hinton, G., and Anderson, J., Eds. Parallel Models of Associative Mem­
ory. Lawrence Erlbaum Associates', Hillsdale, N.J., 1981.

14. Holland, J. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Mich., 1975.

15. Hopfield, J.J. Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. 79 (1982),
2554-2558.

16. Kanerva, P. Self-propagating search: A unified theory of memory.
Rep. CSLI-84-7, Center for the Study of Language and Information,
Stanford University, Calif., Mar. 1984.

17. Kolodner, J. Retrieval and Organizational Strategies in Conceptual Mem­
ory: A Computer Model. Lawrence Erlbaum Associates, Hillsdale,
N.J., 1984.

18. Kowalski, R.A. Predicate logic as programming language. In Proceed­
ings of the IFIPS Congress (Amsterdam). International Federation of
Information Processing Societies, 1974, pp. 570-574.

19. Lebowitz, M. Integrated learning: Controlling explanation. Cognitive
Sci. 10,2 (Apr.-June 1986),219-240.

20. Lebowitz, M. Not the path to perdition: The utility of similarity­
based learning. In Proceedings of the 5th National Conference on Artifi­
cial Intelligence (AAAI-86) (philadelphia, Pa., Aug. 11-15). American
Association for Artificial Intelligence, Menlo Park, Calif., 1986,
pp. 533-537.

21. Lee, W. Decision Theory and Human Behavior. Wiley, New York, 1!;J71.
22. McClelland, J.L., and Rumelhart, D.E., Eds. Parallel Distributed Pro­

cessing: Explorations in the Microstructure of Cognition. MIT Press,
Cambridge, Mass., 1986.

23.	 Merriam-Webster's Pocket Dictionary. Merriam-Webster, Springfield,
Mass., 1974.

24. Michalski, R, Carbonell, J., and Mitchell, T., Eds. Machine Learning.
Tioga, Palo Alto, Calif., 1983.

25. Michalski, R, Carbonell, J., and Mitchell, T., Eds. Machine Learning.
Vol. 2, Tioga, Palo Alto, Calif., 1986.

26. Miller, G.A., Gelenter, E., and Pribram, K. Plans and the Structure of
Behavior. Holt, Rinehart and Winston, New York, 1960.

27. Minsky, M. The Society of Minds. Simon and Schuster, New York: To
be published. ,

28. Mitchell, T., Utgoff, P., and Banerji, R. Learning by experimentation:
Acquiring and refining problem-solving heuristics. In Machine Learn­
ing, R. Michalski et. al., Eds. Tioga, Palo Alto, Calif., 1983.

29. Mooney, R. A domain independent explanation-based generalizer.
In Proceedings of the 5th National Conference on Artificial Intelligence
(AAAI-86) (Philadelphia, Pa., Aug. 11-15). American Association for
Artificial Intelligence, Menlo Park, Calif., 1986, pp. 551-555.

30. Newell, A. The knowledge level. AI Mag. 2,2 (Summer 1981),1-20.
31. Newell, A., and Simon, H. Human Problem Solving. Prentice-Hall,

Engelwood Cliffs, N.J., 1972.
32. Newell, A., and Simon, H.A. GPS, a program that simulates human

thought. In Computers and Thought, E.A. Feigenbaum and J. Feld­
man, Eds. McGraw-Hill, New York, 19,63, pp. 279-293.

33. Newell, A., Ernst, G., and Shaw, J. Elements of a theory of human
problem solving. PsychoI. Rev. 65, (1958),151-166.

34.	 Quinlan, J.R. Discovering rules from la'rge collections of examples: A
case study. In Expert Systems in the Micro Electronic Age, D. Michie,
Ed. Edinburgh University Press, Edinburgh, 1979.

35. Robinson, J.A. A machine-oriented logic based on the resolution
principle. J. ACM 12, 1 Uan. 1965),23-41.

36. Rosenblatt, F. Principles of Neurodynamics: Perceptions and Theory of
Brain Mechanisms. Spartan, Washington, D.C., 1961.

37. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. Learning internal
representations by error propagation. In Parallel Distributed Process­
ing: Explorations in the Microstructure of Cognition, J.L. McClelland
and D.E. Rumelhart, Eds. MIT Press, Cambridge, Mass., 1986.

38. Samuel, A. Some studies in machine learning using the game of
checkers. IBM J. Res. Dev. 3,3 (1959). 210-299.

39. Samuel, A. Sonie studies in machine learning using the game of
checkers II. IBM J. Res. Dev. 11,6 (1967), 601-617.

40. Schank, R.C., Dynamic Memory: A Theory of Reminding and Learning
in Computers and People. Cambridge University Press, New York,
1982.

41. Sejnowski, T.J., and Rosenberg, C.R NETtalk: A parallel network
that learns to read aloud. Electrical Engineering and Computer Sci­
ence Dept., Johns Hopkins Univ. Tech. Rep. JHU/EECS-86/01, 1986.

42. Shortliffe, E. Computer Based Medical Consultations: MYCIN. Elsevier
North-Holland, New York, 1976.

43. Stanfill, C., and Kahle, B. Parallel free-text search on the Connection
Machine system. Commun. ACM 29,12 (Dec. 1986), 1229-1239.

44. Sussman, G., Winograd, T., and Charniak, E. MICRO-PLANNER ref­
erence manual. AI Memo 203a, MIT AI Laboratory, MIT, Cambridge,
Mass., Dec. 1971.

45. Waltz, D.L., Genesereth, M., Hart, P., Hendrix, G., Joshi, A.,
McDermott, J., Mitchell, T., Nilsson, N.• Wilensky, R., and Woods,
W. Artificial intelligence: An assessment of the state-of-the-art
and recommendation for future directions. AI Mag. 4, 3 (Fall 1983),
55-67.

46. Winston, P. Learning structural descriptions from examples. In The
Psychology of Computer Vision, P. Winston, Ed McGraw-Hill, New
York, 1975.

47. Woods, W.A. Transition network grammars for natural-language
analysis. Commun. ACM 13, 10 (Oct. 1970), 591-606.

CR Categories and Subject Descriptors: C.l.2 [Processor Architec­
tures]: Multiple Data Stream Architectures-single-instruction-stream,
multiple-data-stream processors (SIMD); 1.2.0 [Artificial Intelligence]:
General-paradigms; 1.2.6 [Artificial Intelligence]: Learning-induction

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Connection Machine, massively

parallel architectures, memory

Authors' Present Address: Craig Stanfill and David Waltz, Thinking Ma­
chines Corporation, 245 First Street, Cambridge, MA 02142-1214. David
Waltz is also at Computer Science Dept., Brandeis Univ., Waltham, MA
02254.

Permission to copy without fee all or part of this material is granted '
provided that the copies are not made or distributed for direct commer­
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1228 Communications of the ACM	 December 1986 Volume 29 Number 12

